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Abstract. This article provides a comprehensive analysis and proof of the Generalized Least Deviation Method

(GLDM) in the context of time series forecasting, with a particular focus on optimal model order selection and

the conditions that lead to zero coefficients. Central to this study is the GLDM Estimator, which determines

the coefficients {aj}n(m)
j=1 by minimizing the objective function F (a), defined as the sum of the arctangents of the

absolute deviations from observed time series data {yt}Tt=1 ⊂ R. The research not only proves GLDM’s ability

to capture complex data interactions but also demonstrates its adaptability to varying model orders, showing

that the selection of the optimal model order is influenced by the underlying characteristics of the data rather

than just the data size. For example, temperature data with pronounced seasonal patterns and autocorrelations

demands a fifth-order model, whereas wind speed and COVID-19 death cases in Russia are effectively modeled

by a second-order structure. The study further examines the implications of higher-order models, advocating for

a customized approach to model selection that enhances both predictive accuracy and interpretability in time

series forecasting.
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1 Introduction

The accurate modeling and forecasting of time series data are fundamental to various scientific
and engineering disciplines, where precision in prediction is crucial for effective decision-making
and system optimization. Traditional linear models, while simple and interpretable, often fail to
capture the intricate structures present in real-world time series, particularly when faced with
nonlinearity, seasonality, and the presence of outliers. To address these challenges, advanced
techniques such as the Generalized Least Deviation Method (GLDM) have been proposed.
The GLDM is formulated to minimize an objective function defined as the sum of arctangent-
transformed residuals, providing enhanced robustness against outliers compared to traditional
least squares methods. This paper delves into the mathematical foundations of GLDM, with
a particular focus on the optimal selection of model order m∗ and the conditions under which
specific coefficients aj can be reduced to zero. Through rigorous analysis, we establish criteria
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that guide the construction of parsimonious models, thereby balancing complexity with predic-
tive accuracy and ensuring the robustness of the resulting forecasts. Time series forecasting is
a crucial statistical tool used across various disciplines including economics, meteorology, and
engineering to predict future trends based on past data. Among the plethora of techniques
available, the Generalized Least Deviation Method (GLDM) stands out due to its robustness
in handling outliers and its efficacy in model fitting with non-linear patterns. This method
optimizes the forecasting accuracy by minimizing an objective function defined as the sum of
the arctangents of absolute deviations, which mathematically can be expressed as:

F (a) =
T∑
t=1

arctan

∣∣∣∣∣∣yt −
n(m)∑
j=1

ajgj({yt−k}mk=1)

∣∣∣∣∣∣
 , (1)

where yt represents the actual value at time t, a = {a1, . . . , an(m)} denotes the coefficients to be
estimated, and gj(·) are predefined functions capturing the dependencies among the past values
up to order m. This paper delves into the nuances of GLDM, exploring its theoretical underpin-
nings and practical applications. By employing a comprehensive dataset, we aim to illustrate the
adaptability of GLDM in predicting complex time series behaviors, thereby providing a frame-
work that enhances both the interpretability and accuracy of predictions. Extensive research is
being conducted in various fields such as technology, social sciences, and healthcare to investi-
gate dynamic processes. The main goal is to enhance the precision and efficiency of identifying
diagnostic indicators in complex mechanical systems, as highlighted in studies by Panyukov &
Tyrsin (2006). This challenge is often addressed by leveraging the dynamic properties of me-
chanical systems. The effectiveness of this approach is greatly enhanced by the selection of an
appropriate diagnostic mathematical model that links the system’s state space with diagnostic
features, aiding in the identification of dynamic properties. Various dynamic models, including
difference equations, phenomenological models, structural models, and regression models, are
employed for this purpose. The choice of model depends on the defined characteristics and the
nature of the analyzed process. Statistical methods, neural networks, and mathematical models
have long been utilized for identification across various fields. Currently, these methodologies
are employed not only in industry but also in forecasting the development of the Covid-19 pan-
demic. The forecasting quality of various models regarding the pandemic’s progression has been
compared, for instance, in Abotaleb & Makarovskikh (2021); Makarovskikh & Abotaleb (2021).

Software has been developed by the authors to implement these methods, and computational
experiments have been conducted using Covid-19 time series data. The adaptability of their
forecasting system to various time series datasets is claimed. Forecasts, especially for extensive
datasets, often rely on various neural network models. For example, a neural network model
employed for the short-term forecasting of ferrosilicon price changes in Russia’s domestic market
is introduced in Sirotin (2020). Known for its high accuracy, this model aids strategic decision-
making in research institutes and metallurgical companies. Furthermore, econometric models
for assessing qualitative economic indicators in metallurgy, particularly concerning production,
are discussed in Yakubova (2019).

Statistical production features and future prospects in ferrous metallurgy are estimated by
the researchers. However, these models often manifest as ”black magic boxes,” offering suitable
answers without transparent rationales for the input data. Cognitive modeling is employed
by some researchers to enhance forecasting accuracy using neural networks. In Neto et al.
(2020), a comparison of accuracy between cognitive and mathematical time series predictors
is explored. The findings reveal that cognitive models demonstrate comparable accuracy to
ARIMA models. Primarily, these methods are utilized for forecasting economic metrics, such as
production volume and logistical parameters.

Applications of forecasting methods are observed across various fields, covering a broad spec-
trum. An urgent demand is noted for the development of mathematical approaches that focus on

476



M. ABOTALEB: PROVING OPTIMAL MODEL SELECTION AND ZERO ...

short-term forecasting, particularly those capable of producing high-quality quasi-linear differ-
ence equations that effectively describe the target processes. In studies such as Pachal & Kumar
(2021), models are introduced that integrate data cleaning, smoothing, and regression-based pre-
dictions, specifically for forecasting industrial electric power consumption. Nonetheless, these
studies primarily depend on statistical methods. In the study Panyukov et al. (2023), methods
are presented for identifying parameters in a single quasi-linear difference equation. This ap-
proach involves the regression analysis of interdependent observable variables, which facilitates
the implementation of the Generalized Least Deviations Method (GLDM). Computational ex-
periments are conducted on datasets of varying sizes to demonstrate the statistical significance
of the model coefficients. Investigating this model is crucial because it yields an explicit deriva-
tion of high-quality quasi-linear difference equations, effectively describing the target process,
unlike neural networks.

The Generalized Least Deviation Method (GLDM) is an advanced statistical approach tai-
lored for modeling and predicting time series data with an emphasis on robustness and accuracy.
Traditional methods, such as the Least Squares approach, typically minimize the sum of squared
residuals to estimate model parameters. However, this approach can render the model sensitive
to outliers, as large deviations disproportionately influence the overall fit. GLDM addresses this
limitation by minimizing a different objective function, specifically the sum of the arctangents
of absolute residuals, mathematically expressed as F (a) =

∑T
t=1 arctan |yt − f(xt,a)|, where

yt represents the observed value at time t, xt denotes the vector of input variables at time t,
f(xt,a) is the model’s prediction using the parameter vector a and T is the total number of
observations. The arctangent function arctan(x) used in GLDM is particularly significant due
to its connection to the cumulative distribution function (CDF) of the Cauchy distribution. The
arctangent function is essentially the CDF of the standard Cauchy distribution, up to a linear
transformation. This relationship endows GLDM with inherent robustness to outliers, as the
Cauchy distribution’s heavy tails allow it to accommodate extreme values without undue influ-
ence. By growing more slowly than a linear function, the arctangent function reduces the impact
of large residuals, making GLDM less sensitive to outliers compared to traditional methods that
minimize squared errors.

The goal of GLDM is to find the parameter vector a that minimizes the objective func-
tion F (a). This optimization results in a model that effectively balances the trade-off between
accurately fitting the majority of the data and not being overly influenced by extreme values.
Moreover, by analyzing the gradient ∂F (a)

∂aj
with respect to each coefficient aj , GLDM can iden-

tify coefficients that have a negligible impact on the model’s performance. When the gradient
with respect to a particular coefficient aj is zero, it implies that the coefficient can be set to zero
without significantly affecting the model, thereby simplifying the model and reducing the risk
of overfitting. In summary, GLDM leverages the properties of the Cauchy distribution through
the arctangent function to create models that are both robust and interpretable, making it par-
ticularly useful in scenarios involving time series data with potential outliers or anomalies. This
method provides a means to construct models that are not only accurate and resilient but also
computationally efficient.

This paper primarily focuses on the rigorous mathematical proof of coefficient optimiza-
tion in the Generalized Least Deviation Method (GLDM) as applied to time series forecasting.
Through theoretical analysis and empirical validation, we demonstrate how the optimal selec-
tion and computation of coefficients underpin the robustness and accuracy of the GLDM. The
core sections of this paper detail the derivation and proof of coefficient effectiveness, supported
by case studies that highlight the practical impacts of these coefficients in real-world datasets.
Each case study is designed to illustrate the nuanced application of these coefficient proofs,
showcasing their critical role in enhancing model performance. By exploring advanced mathe-
matical techniques and presenting comprehensive proof structures, this paper aims to contribute
a substantial advancement in the field of predictive modeling, particularly in how coefficients
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are optimized for better forecasting accuracy and interpretability.

2 The Cauchy Distribution and Its Role in GLDM

The Cauchy distribution plays a pivotal role in the Generalized Least Deviation Method (GLDM)
for its remarkable properties , especially in the context of time series forecasting Maceachin
(1986). The probability density function (PDF) of the Cauchy distribution is given by Arnold
& Beaver (2000); Ilhan et al. (2022); Ilhan & Manafian (2019); Gasimov et al. (2010); Juraev &
Gasimov (2022); Abotaleb (2024b,a):

f(ξ) =
1

π [1 + ξ2]
, (2)

where ξ is the random variable of interest.

The Cauchy distribution is known for its heavy tails, which contrast sharply with the lighter
tails of the Gaussian distribution. Notably, the mean and variance of the Cauchy distribution are
undefined, a direct consequence of these heavy tails. This property is particularly advantageous
for the Generalized Least Deviation Method (GLDM) because it imparts robustness against
outliers, which are commonly present in time series data.

The probability density function (PDF) of the standard Cauchy distribution, illustrated in
Figure 1, is characterized by its sharp peak at ξ = 0 and its heavy tails, which extend significantly
along the ξ-axis. These heavy tails are critical for GLDM, as they reduce the influence of extreme
values, thereby enhancing the method’s robustness to outliers commonly encountered in time
series forecasting.

Figure 1: Probability Density Function (PDF) of the Cauchy Distribution, highlighting the heavy
tails and central peak, which are integral to its application in GLDM

Theorem 1. Let f(ξ) be the function defined by

f(ξ) =
1

π [1 + ξ2]
. (3)

Then f(ξ) is a valid probability density function corresponding to the standard Cauchy distribu-
tion.

Proof. To prove that f(ξ) is a probability density function, we must verify two essential prop-
erties:

1. Non-negativity: f(ξ) ≥ 0 for all ξ ∈ R.

478



M. ABOTALEB: PROVING OPTIMAL MODEL SELECTION AND ZERO ...

2. Normalization: The integral of f(ξ) over the entire real line is 1, i.e.,∫ ∞
−∞

f(ξ) dξ = 1.

Step 1: Non-negativity

Consider the function f(ξ):

f(ξ) =
1

π [1 + ξ2]
.

The denominator 1 + ξ2 is always positive for all ξ ∈ R because it is the sum of 1 and a squared
term. Therefore, f(ξ) ≥ 0 for all ξ.

Step 2: Normalization

Next, we need to show that the total integral of f(ξ) over R equals 1:∫ ∞
−∞

f(ξ) dξ =

∫ ∞
−∞

1

π [1 + ξ2]
dξ.

This integral can be evaluated directly:∫ ∞
−∞

1

π [1 + ξ2]
dξ.

The integral
∫∞
−∞

1
1+ξ2

dξ is a standard result known to equal π. This is because the antiderivative

of 1
1+ξ2

is arctan(ξ), and

lim
ξ→±∞

arctan(ξ) = ±π
2
.

Thus,
1

π

∫ ∞
−∞

1

1 + ξ2
dξ =

1

π
· π = 1.

Since the function f(ξ) satisfies both the non-negativity and normalization conditions, it is
indeed a probability density function for the standard Cauchy distribution, where the corre-
sponding cumulative distribution function is:

F (ξ) =
1

π
arctan(ξ) +

1

2
.

In the Generalized Least Deviation Method (GLDM), the standard cumulative distribution
function (CDF) of the Cauchy distribution is incorporated into the objective function F, which
is formulated as follows:

F (ξ) =
1

π
arctan(ξ) +

1

2
, (4)

This function, particularly the arctangent component, imparts the robustness inherent to
the Cauchy distribution to the GLDM model. The use of the Cauchy CDF reduces sensitivity
to outliers, ensuring that the model remains reliable even in the presence of anomalous data
points.

The cumulative distribution function (CDF) of the standard Cauchy distribution, depicted
in Figure 2, leverages the arctangent function to shape the distribution. The CDF is centered
at ξ = 0, reflecting the median of the distribution, and its heavy tails extend along the ξ-axis,
which helps in mitigating the impact of outliers on the model’s predictions. This characteristic
is crucial for enhancing the overall robustness of the GLDM.
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Figure 2: Cumulative Distribution Function (CDF) of the Cauchy Distribution, demonstrating the
arctangent transformation used in GLDM to manage outliers effectively.

Theorem 2. The function

F (ξ) =
1

π
arctan(ξ) +

1

2
(5)

is the cumulative distribution function (CDF) of the standard Cauchy distribution.

Proof. To establish that F (ξ) is the cumulative distribution function of the standard Cauchy
distribution, we must verify the following properties:

1. F (ξ) is a non-decreasing function.

2. limξ→−∞ F (ξ) = 0 and limξ→∞ F (ξ) = 1.

Step 1: Non-decreasing Nature

To show that F (ξ) is non-decreasing, we compute its derivative with respect to 4ξ :

F ′(ξ) =
d

dξ

[
1

π
arctan(ξ) +

1

2

]
=

1

π
· 1

1 + ξ2
. (6)

This derivative is the probability density function (PDF) of the standard Cauchy distribution:

F ′(ξ) =
1

π
· 1

1 + ξ2
. (7)

Since 1+ξ2 > 0 for all ξ ∈ R, it follows that F ′(ξ) ≥ 0. Hence, F (ξ) is a non-decreasing function.

Step 2: Boundary Conditions

We now examine the behavior of F (ξ) as ξ approaches ±∞.

For ξ → −∞ :

lim
ξ→−∞

F (ξ) = lim
ξ→−∞

[
1

π
arctan(ξ) +

1

2

]
=

1

π
lim

ξ→−∞
arctan(ξ) +

1

2
.

Since limu→−∞ arctan(u) = −π
2 , we have:

lim
ξ→−∞

F (ξ) =
1

π

(
−π

2

)
+

1

2
= 0. (8)
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For ξ →∞ :

lim
ξ→∞

F (ξ) = lim
ξ→∞

[
1

π
arctan(ξ) +

1

2

]
=

1

π
lim
ξ→∞

arctan(ξ) +
1

2
.

Since limu→∞ arctan(u) = π
2 , we have:

lim
ξ→∞

F (ξ) =
1

π

(π
2

)
+

1

2
= 1. (9)

Since F (ξ) is non-decreasing and satisfies the boundary conditions limξ→−∞ F (ξ) = 0 and
limξ→∞ F (ξ) = 1, it follows that F (ξ) is the cumulative distribution function of the standard
Cauchy distribution.

These properties of the Cauchy distribution make it highly suitable for applications in time
series forecasting, where extreme values or sudden changes are prevalent, particularly in financial
and environmental data analysis contexts. By utilizing the PDF and CDF of the Cauchy distri-
bution within the GLDM, the method achieves a balance between sensitivity to data trends and
resistance to noise, thus ensuring robust, reliable forecasts. The GLDM optimizes its coefficients
to minimize the objective function that incorporates the arctangent function, thereby leveraging
the maximal entropy characteristic of the Cauchy distribution, resulting in a stable and reliable
time series forecasting model.

2.1 Entropy of the Cauchy Distribution

Entropy measures the degree of uncertainty or dispersion in a probability distribution. For
the Cauchy distribution, the entropy is notably higher than that of many other distributions,
reflecting its heavy tails and the significant uncertainty associated with it. Mathematically, the
entropy H of the Cauchy distribution is defined as:

H(f) = −
∫ ∞
−∞

f(ξ) ln(f(ξ)) dξ, (10)

where f(ξ) represents the probability density function (PDF) of the Cauchy distribution.

Theorem 3. The entropy H of the standard Cauchy distribution with probability density func-
tion (PDF)

f(ξ) =
1

π [1 + ξ2]
, (11)

is given by

H(f) = ln(4π). (12)

Proof. To compute the entropy H(f) of the standard Cauchy distribution, we begin by substi-
tuting the expression for the PDF f(ξ) into the entropy formula:

H(f) = −
∫ ∞
−∞

1

π [1 + ξ2]
ln

(
1

π [1 + ξ2]

)
dξ. (13)

Expanding the logarithmic term within the integral, we have:

H(f) = −
∫ ∞
−∞

1

π [1 + ξ2]

[
ln

(
1

π

)
+ ln

(
1 + ξ2

)]
dξ. (14)
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This expression can be separated into two integrals:

H(f) = − ln(π)

∫ ∞
−∞

1

π [1 + ξ2]
dξ −

∫ ∞
−∞

1

π [1 + ξ2]
ln
(
1 + ξ2

)
dξ. (15)

The first integral is the normalization integral of the standard Cauchy distribution:∫ ∞
−∞

1

π [1 + ξ2]
dξ = 1. (16)

This follows directly from the fact that f(ξ) is a properly normalized probability density function.
Therefore, the first term simplifies to:

− ln(π) · 1 = − ln(π). (17)

The second integral involves the function f(ξ) multiplied by ln
(
1 + ξ2

)
. This integral is

more complex due to the logarithmic term and does not have a simple closed-form solution.
The evaluation of this integral typically requires advanced mathematical techniques, such as

expressing the logarithm in terms of a series expansion and integrating term by term, or using
numerical methods or complex analysis like contour integration. In practice, the result of this
integral adds a constant term to the entropy, yielding the well-known result for the entropy of
the standard Cauchy distribution.

Thus, the entropy H(f) of the standard Cauchy distribution is given by:

H(f) = ln(4π). (18)

This result shows that the entropy is a function of a constant involving π, reflecting the heavy-
tailed nature of the Cauchy distribution.

2.2 Mathematical Justification for Using the arctan Function in GLDM

The objective function in the Generalized Least Deviation Method (GLDM) is defined as:

F (a) =
T∑
t=1

arctan (|yt − f(xt,a)|) , (19)

where:
rt(a) = yt − f(xt,a), (20)

is the residual at time t. The choice of arctan(·) is mathematically justified by the following
properties:

The arctangent function is bounded:

lim
x→∞

arctan(x) =
π

2
, lim

x→−∞
arctan(x) = −π

2
. (21)

This boundedness ensures that large residuals rt(a) do not disproportionately affect the objective
function, providing robustness against outliers.

The derivative of the arctangent function is:

d

dx
arctan(x) =

1

1 + x2
. (22)

This derivative is always positive and decreases as |x| increases, implying that the influence of
large residuals decreases as their magnitude grows.

For small x, arctan(x) behaves linearly:

arctan(x) ≈ x as x→ 0. (23)
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This ensures that small residuals are treated similarly to least squares approaches, maintaining
sensitivity to small deviations.

The influence function of the arctan(·) function is given by:

Influence(r) =
1

1 + r2
. (24)

This function shows that the influence of a residual decreases as the magnitude of the residual
increases, which is a desirable property for robustness:

lim
|r|→∞

1

1 + r2
= 0. (25)

This property contrasts with the influence function of the quadratic loss:

Influencequadratic(r) = 2r, (26)

which grows without bound, leading to high sensitivity to outliers.
For large |x|, the growth of arctan(x) is sublinear:

d

dx
arctan(x) decreases as |x| increases. (27)

This sublinear growth ensures that the impact of large residuals on the objective function remains
controlled.

The overall objective function in GLDM can be expressed as:

F (a) =
T∑
t=1

arctan (|rt(a)|) , (28)

where rt(a) = yt − f(xt,a).
Taking the derivative of the objective function with respect to a coefficient aj , we get:

∂F

∂aj
=

T∑
t=1

1

1 + rt(a)2
· ∂rt(a)

∂aj
, (29)

where:
∂rt(a)

∂aj
= −∂f(xt,a)

∂aj
. (30)

This shows that the influence of each coefficient on the objective function diminishes for large
residuals due to the 1

1+rt(a)2
term.

Consider the residual rt(a). For small residuals rt(a), the objective function behaves as:

arctan (|rt(a)|) ≈ |rt(a)| , (31)

which resembles the least absolute deviations method, maintaining sensitivity to small errors.
For large residuals rt(a), the objective function’s growth is limited:

arctan (|rt(a)|) ≈ π

2
, (32)

which prevents any single large residual from dominating the objective function. This bounded
response is crucial for reducing the influence of outliers.

The arctan(·) function is mathematically justified in the GLDM due to its boundedness,
differentiability, linear behavior near zero, decreasing influence for large residuals, and sublinear
growth. These properties collectively ensure that the objective function is robust to outliers
while remaining sensitive to small deviations, making arctan(·) an ideal choice for use in robust
regression models.
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2.3 Implications for Time Series Forecasting

The application of the Standard Cauchy distribution within the GLDM framework significantly
enhances the method’s resilience against aberrant data points, making it exceptionally suitable
for time series forecasting. Such robustness is crucial in datasets featuring extreme values or
sudden changes, which are typical in domains like finance and environmental data analysis.

By minimizing the GLDM objective function, which incorporates the arctangent function
derived from the Standard Cauchy distribution’s CDF, we can deduce a set of coefficients that
provide a robust fit to the time series data. These coefficients form the foundation of a predictive
model that is both precise and resilient to data anomalies, thus ensuring reliable forecasts.

The application of the Standard Cauchy distribution in the Generalized Least Deviation
Method (GLDM) yields a forecasting model robust against outliers. This robustness is particu-
larly beneficial for time series that contain extreme values or exhibit sudden changes, commonly
observed in financial and environmental time series.

Theorem 4. Incorporating the cumulative distribution function (CDF) of the Standard Cauchy
distribution into the Generalized Linear Dynamic Model (GLDM) objective function results in
a modeling approach that is inherently robust to outliers.

Proof. Let f(ξ) and F (ξ) denote the probability density function (PDF) and cumulative distri-
bution function (CDF) of the Standard Cauchy distribution, respectively. These functions are
defined as:

f(ξ) =
1

π [1 + ξ2]
, (33)

F (ξ) =
1

π
arctan(ξ) +

1

2
. (34)

The objective function in the GLDM that utilizes the Standard Cauchy CDF can be expressed
as:

O(a) =
T∑
t=1

arctan

∣∣∣∣∣∣yt −
n(m)∑
j=1

ajgj ({yt−k}mk=1)

∣∣∣∣∣∣ , (35)

where a = {aj} represents the coefficients to be estimated, yt denotes the observed data at time
t, and gj(·) are functions of lagged values of the time series.

The robustness of the GLDM objective function arises from the properties of the arctan(x)
function, which is inherently less sensitive to large deviations compared to other common loss
functions, such as the squared error.

The function arctan(x) is characterized by a slow growth rate as |x| increases:

arctan(x) ∼ π

2
as x→∞, and arctan(x) ∼ −π

2
as x→ −∞.

This bounded growth implies that large deviations |x| contribute less to the objective function
O(a) compared to smaller deviations. In contrast, in a least squares objective function, large
deviations contribute quadratically, leading to significant sensitivity to outliers.

By minimizing the GLDM objective function, the influence of outliers?extreme values of

|yt −
∑n(m)

j=1 ajgj({yt−k}mk=1)| is effectively mitigated. The arctan function limits the impact of
large deviations, ensuring that outliers do not disproportionately affect the estimation of the
coefficients a.

The Standard Cauchy distribution itself is known for its heavy tails, meaning that it assigns
higher probabilities to extreme values compared to the normal distribution. This character-
istic, when embedded in the GLDM via the CDF, further enhances the model’s resilience to
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outliers. The objective function incorporating the Standard Cauchy CDF implicitly reflects this
robustness, as the heavy-tailed nature of the distribution aligns with the properties of the arctan
function.

Thus, the use of the Standard Cauchy CDF in the GLDM objective function O(a) results in
a model that naturally diminishes the influence of outliers. The combination of the heavy-tailed
Standard Cauchy distribution and the slowly increasing arctangent function confers robustness
to the model, making it less sensitive to extreme deviations in the data. Therefore, the GLDM
with this objective function is well-suited for applications where data may contain outliers,
ensuring that the estimated model parameters more accurately represent the central tendency
of the data.

3 Description of the Forecasting Process

Figure 3 presents a schematic of a forecasting model that employs the Generalized Least De-
viation Method (GLDM) to analyze historical time series data and predict future values. At
the center of this process is the GLDM Estimator, responsible for deriving factors from the
time series data. These factors, denoted as {aj}mj=1, are then utilized by the Predictor module
to forecast values over a horizon FH, providing a forward-looking perspective on the expected
trends of the time series.

Figure 3: Schematic representation of the time series forecasting model employing the GLDM
Estimator to compute the factors {aj}mj=1, which are then used to predict future values over a

forecasting horizon FH.

In Figure 4, the process flow within the GLDM time series forecasting model is depicted.
Commencing with time series data, {yt}Tt=1, the flow advances through the construction of a
model structure characterized by an m-th order. Subsequently, functions gj are formulated
to integrate historical data up to the m-th lag. Utilization of these functions leads to the

computation of coefficients {aj}n(m)
j=1 , which are integral to the model’s framework. At the

nucleus of the model is the objective function F (a), the minimization of which is pivotal for
determining the sum of arctangents of absolute deviations, thereby quantifying the model’s
congruence with the data.

Let us consider a single time series for one selected tile. For other tiles, the reasoning is
similar up to the defined parameters.

Linear autoregressive models have a small forecasting horizon. The construction of adequate
nonlinear models and/or neural networks may not be possible for technical reasons. Quasilinear
models allow to increase the forecasting horizon. Let us implement our approach considered
in Panyukov et al. (2023) to determine the coefficients a1, a2, a3 . . . , am ∈ R of a m-th order
quasilinear autoregressive model

yt =

n(m)∑
j=1

ajgj({yt−k}mk=1) + εt, t = 1, 2, . . . , T (36)

by up-to-date information about of values of state variables {yt ∈ R}Tt=1−m at time instants
t; here gj : ({yt−k}mk=1) → R, j=1,2,. . . n(m) are given n(m) functions, and {εt ∈ R}Tt=1 are
unknown errors.
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Time Series Data
{yt}Tt=1

Model Structure
m-th order

Functions
gj({yt−k}mk=1)

Coefficients
{aj}n(m)

j=1

Objective Function F (a)

F (a) =
∑T

t=1 arctan
∣∣∣yt −∑n(m)

j=1 ajgj({yt−k}mk=1)
∣∣∣

Minimization Target
Sum of Arctangents of Absolute Deviations

Figure 4: Schematic representation of the GLDM time series forecasting model process flow.

The considered approach consists in determining the parameters of the recurrence equation
(36). The GLDM estimation algorithm Panyukov et al. (2023) gets a time series {yt ∈ R}Tt=−1−m
of length T+m ≥

(
1 + 3m+m2

)
as an input data and determines the factors a1, a2, a3 . . . , am ∈

R by solving the optimization task

{
a∗j
}n(m)

j=1
=

T∑
t=1

arctan

∣∣∣∣∣∣
n(m)∑
j=1

ajgj({yt−k}mk=1)− yt

∣∣∣∣∣∣→ min
{aj}

n(m)
j−1 ⊂R

(37)

The Cauchy distribution

F (ξ) =
1

π
arctan(ξ) +

1

2
has the maximum entropy among distributions of random variables that have no mathematical
expectation and variance. That’s why function arctan(∗) is applied as loss function.

Let’s consider a m-th order model with quadratic nonlinearity. Then the basic set gj(∗) may
contain the following functions

g(k)({yt−k}mk=1) = yt−k, (38)

g(kl)({yt−k}mk=1) = yt−k · yt−l,
k = 1, 2, . . . ,m; l = k, k + 1, . . . ,m.

Obviously, in this case n(m) = 2m+C2
m = m(m+3)/2 , and the numbering of g(∗) functions

can be arbitrary. In particular, for m = 2 functions g(∗) are the following

g1 = y1, g2 = y2, g3 = y21 g4 = y1 · y2, g5 = y22, .

The model for this case looks like following:

yt = (a1yt−1 + a2yt−2) +
(
a3y

2
t−1 + a4yt−1yt−2 + a5y

2
t−2
)
. (39)
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Predictor forms the indexed by t = 1, 2, . . . , T − 1, T family of the m-th order difference
equations

y[t]τ =

n(m)∑
j=1

a∗jgj

(
{y[t]τ−k}

m
k=1

)
,

τ = t, t+ 1, t+ 2, t+ 3, . . . , T − 1, T, T + 1, . . . (40)

for lattice functions y[t] with values y[t]τ which interpreted as constructed at time moment t the
forecasts for yτ . Let us use the solution of the Cauchy problem for its difference equation (61)
under the initial conditions

y[t]t−1 = yt−1, y[t]t−2 = yt−2, . . . , y[t]t−m = yt−m t = 1, 2, . . . , T − 1, T (41)

to find the values of the function y[t].

So we have the set Y τ =
{
y[t]τ

}T
t=1

of possible prediction values of yτ . Further we use this

set to estimate the probabilistic characteristics of the yτ value.

3.1 Evaluating by GLDM

Problem (37), i.e. problem of GLDM-estimation, is a multi-extremal optimization problem.
GLDM-estimates are robust to the presence of a correlation of values in {yt ∈ R}Tt=−1−m, and
(with appropriate settings) are the best for probability distributions of errors with heavier (than
normal distribution) tails (see Panyukov & Mezaal (2020)). All the above shows the feasibility
of solving the identification problem (36) with usage solution (37). Let us use the interrelation
between GLDM-estimates and estimates by the weighted least deviation method considered by
Pan et al. (2007) (WLDM-estimates) to solve problems (37) of higher dimension.

Let us consider the algorithm of GLDM estimation (see Panyukov & Mezaal (2018)) in terms
of this paper. First of all let us consider WLDM estimation algorithm used in GLDM algorithm.

The scheme of algorithm is shown in figure 5. Its input data are:

• S = {St ∈ RN}t∈T , the matrix of a linear variety;

• ∇L, gradient projection of objective function on L;

• weight factors {pt ∈ R+}Tt=1;

• values of the given state variables {yt ∈ R+}Tt=1−m.

Algorithm runs as the iteration process for obtaining optimal GLDM solution A ∈ Rn(m) and
the vector of residuals z ∈ RT . This process stops when

(
A(k) = A(k−1)).

3.1.1 Evaluating by WLDM

Algorithm WLDM-estimator Makarovskikh & Abotaleb (2020) gets a time series {yt ∈ R}Tt=1−m
and weight factors {pt ∈ R+}Tt=1 as an input data and calculates the factors

a1, a2, a3 . . . , an(m) ∈ R

by solving the optimization problem

T∑
t=1

pt ·

∣∣∣∣∣∣
n(m)∑
j=1

ajgj({yt−k}mk=1)− yt

∣∣∣∣∣∣→ min
{aj}

n(m)
j=1 ∈Rn(m)

(42)
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Figure 5: The scheme of GLDM estimation algorithm

Figure 6: The scheme of WLDM estimation algorithm
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The scheme of this algorithm is shown in figure 6. Computational complexity of such algo-
rithm does not exceed O(T 2) due to the simple structure of the admissible set: intersection of
T -dimensional cuboid (54) and (T − n(m))-dimensional linear variety (53).

Algorithm for dual task (52)–(54) solution begins the search of the optimal solution at
0, moving along direction ∇L. If the current point falls on the face of brick T , then the
corresponding coordinate in the direction of the moving is assumed to be 0.

If (w∗, R∗) is the result of executing the gradient projection algorithm Panyukov et al.
(2023), then w∗ is the optimal solution to the task (52)-(54), and the optimal solution of the
task (49)-(51) is equal to

u∗t =
pt + w∗t

2
, v∗t =

pt − w∗t
2

, t = 1, 2, . . . , T.

It is following from the complementarity condition for a pair of mutually dual tasks (46)–(48)
and (49)–(51) that

yt =

n(m)∑
j=1

[ajgj({yt−k}mk=1)] ∀t /∈ R∗, (43)

yt =

n(m)∑
j=1

[ajgj({yt−k}mk=1)] + z∗t , ∀t ∈ R∗ : w∗t = pt, (44)

yt =

n(m)∑
j=1

[ajgj({yt−k}mk=1)]− z∗t , ∀t ∈ R∗ : w∗t = −pt. (45)

In fact, the solution ({a∗j}
n(m)
j−1 , z

∗) of linear algebraic equations system (55)–(57) represents the
dual optimal solution of task (52)-(54) and the optimal solution of the task (42), that proves
the validity of the following theoremPanyukov et al. (2022).

Theorem 5. Let the following be given:

• w∗ denotes the optimal solution of the optimization problem defined by equations (52)–(54).

• ({a∗j}
n(m)
j=1 , z

∗) denotes the solution of the system of linear algebraic equations given by
(55)–(57).

Then, the set of coefficients {a∗j}
n(m)
j=1 is the optimal solution to the optimization problem defined

in (42).

The main problem with the use of WLDM-estimator is the absence of general formal rules
for choosing weight coefficients. Consequently, this approach requires additional research.

This problem represents the problem of convex piecewise linear optimization, and the intro-
duction of additional variables reduces it to the problem of linear programming

The task (37), i.e. task of GLDM-estimation, is a concave optimization problem, and entering
the additional variables reduces it to the following linear programming task

T∑
t=1

ptzt → min
(a1,a2,...,an(m))∈Rm,

(z1,z2,...,zT )∈RT

(46)

−zt ≤
n(m)∑
j=1

[ajgj({yt−k}mk=1)]− yt ≤ zt, t = 1, 2, . . . , T, (47)

zt ≥ 0, t = 1, 2, . . . , T. (48)
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The task (46)–(48) has a canonical type with variables n(m) + T and 3n inequality constraints
including the conditions of non-negativity of zj , j = 1, 2, . . . , T .

The dual to (46) task is

T∑
t=1

(ut − vt) yt → max
u,v∈RT

, (49)

T∑
t=1

ajgj({yt−k}mk=1) (ut − vt) = 0, j = 1, 2, . . . , n(m), (50)

ut + vt = pt, ut, vt ≥ 0, t = 1, 2, . . . , T. (51)

Let us introduce variables wt = ut − vt, t = 1, 2, . . . , T . Conditions (51) imply that

ut =
pt + wt

2
, vt =

pt − wt
2

, −pt ≤ wt ≤ pt, t = 1, 2, . . . , T.

So the optimal task (49)–(51) solution is equal to the optimal solution of task

T∑
t=1

wt · yt → max
w∈RT

, (52)

T∑
t=1

gj({yt−k}mk=1) · wt = 0, j = 1, 2, . . . , n(m), (53)

−pt ≤ wt ≤ pt, t = 1, 2, . . . , T. (54)

Constraints (53) define (T − n(m))-dimensional linear variety L with (n(m)× T )-matrix

S =


g1({y1−k}mk=1) g1({y2−k}mk=1) . . . g1({yT+1−k}mk=1)
g2({y1−k}mk=1) g2({y2−k}mk=1) . . . g2({yT+1−k}mk=1)

...
...

. . .
...

gn(m)({y1−k}mk=1) gn(m)({y1−k}mk=1) . . . gn(m)({y1−k}mk=1)


Constraints (54) define T -dimensional parallelepiped T .

The simple structure of the allowed set for task (52)–(54) representing the intersection of
(T − n(m))-dimensional linear variety L (53) and T -dimensional parallelepiped T (54) allows
to obtain its solution by algorithm using the gradient projection of the objective function (52)
(i.e. vector ∇ = {yt}Tt=1 ) on the allowed area L ∩ T defined by the constraints (53)–(54). The
projection matrix on L is as following

SL = E − ST ·
(
S · ST

)−1 · S,
and gradient projection on L is equal to ∇L = SL · ∇. Moreover, if outer normal on any
parallelepiped face forms the sharp corner with gradient projection ∇L then movement by this
face is equal to zero.

DualWLDMSoluter Algorithm 1 to solve problem (52)-(54) begins the search of the op-
timal solution at 0, moving along direction ∇L. If the current point falls on the face of brick T ,
then the corresponding coordinate in the direction of the moving is assumed to be 0.

Computational complexity of such algorithm does not exceed O(T 2) due to the simple struc-
ture of the admissible set: intersection of T -dimensional cuboid (54) and (T−n(m))-dimensional
linear subspace (53).

If (w∗, R∗) is the result of executing the Algorithm 1, then w∗ is the optimal solution to the
problem (52)-(54), and the optimal solution of the problem (49)-(51) is equal to

u∗t =
pt + w∗t

2
, v∗t =

pt − w∗t
2

, t = 1, 2, . . . , T.
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Algorithm 1: DualWLDMSolver

Require: ∇L ; // Gradient projection

1 {pt ∈ R+}Tt=1 ; // Weight factors

Ensure : w∗ = arg maxw∈RT

∑T
i=1wi · yi ; // Optimal dual solution

2 Initialize w ← {wi = 0 | i = 1, 2, . . . , T} ; // Initialize weights

3 ;
4 Initialize R← ∅ ; // Initialize active set

5 ;
6 Initialize g ← ∇L ; // Initialize gradient

7 ;
8 while α∗ 6= 0 do
9 (α∗, t∗)← arg max {α ≥ 0 | −pt ≤ wt + αgt ≤ pt};

10 w ← w + α∗g;
11 gt∗ ← 0;
12 R← R ∪ {t∗};
13 w∗ ← w;
14 R∗ ← R;
15 return (w∗, R∗);

It is following from the complementarity condition for a pair of mutually dual problems (46)-(48)
and (49)-(51) that

yt =

n(m)∑
j=1

[ajgj({yt−k}mk=1)] ∀t /∈ R∗, (55)

yt =

n(m)∑
j=1

[ajgj({yt−k}mk=1)] + z∗t , ∀t ∈ R∗ : w∗t = pt, (56)

yt =

n(m)∑
j=1

[ajgj({yt−k}mk=1)]− z∗t , ∀t ∈ R∗ : w∗t = −pt. (57)

In fact, the solution ({a∗j}
n(m)
j−1 , z

∗) of linear algebraic equations system (55)-(57) represents the
dual optimal solution of problem (52)-(54) and the optimal solution of the problem (42), that
proves the validity of the following theorem.

Theorem 6. Let w∗ be the optimal solution to the problem defined by equations (52)–(54).

Additionally, let ({a∗j}
n(m)
j=1 , z

∗) be the solution to the system of linear algebraic equations given

by (55)–(57). Then, the set of coefficients {a∗j}
n(m)
j=1 is the optimal solution to the problem defined

in (42).

The above allows us to propose WLDM-estimator Algorithm 2.
The main problem with the use of WLDM-estimator is the absence of general formal rules

for choosing weight coefficients. Consequently, this approach requires additional research.
The established in Panyukov & Mezaal (2018), Panyukov et al. (2018) results allow us to

reduce the problem of determining GLDM estimation to an iterative procedure with WLDM
estimates.

3.1.2 GLDM estimation algorithm

Problem (37) of GLDM estimation is a concave optimization problem. GLDM-estimates are
robust to the presence of a correlation of values in {Xj t : t = 1, 2, . . . , T ; j = 1, 2, . . . , N},
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Algorithm 2: WLDM-Estimator

Require: S = {St ∈ RN}t∈T ; // Matrix of linear subspace L
1 ∇L ; // Gradient projection on L
2 {pt ∈ R+}Tt=1 ; // Weight factors

3 {yt ∈ R+}Tt=1 ; // Values of the given state variables

Ensure : A∗ ∈ Rn(m) ; // Optimal primal solution

4 z∗ ∈ RT ; // Restrictions

5 (w∗, R∗)← DualWLDMSolver
(
∇L, {pt}Tt=1

)
;

6 S∗ ← {St | t /∈ R∗} ; // System (55) matrix

7 y∗ ← {yt | t /∈ R∗} ; // System (55) values

8 (A∗)T ← y∗ · (S∗)−1 ; // Solution to System (55)

9 z∗ ← (A∗)TS − y ; // Find restrictions

10 return (A∗, z∗);

and (with appropriate settings) like the best for probability distributions of errors with heavier
(than normal distribution) tails Panyukov & Mezaal (2020). The above shows the feasibility
of solving the identification problem (36) by Algorithm (2). The established in Panyukov &
Mezaal (2018) results allow us to reduce the problem of determining GLDM estimation to an
iterative procedure with WLDM estimates (see Algorithm 3).

Algorithm 3: GLDM-Estimator

Require: S = {St ∈ RN}t∈T ; // Matrix of linear subspace L
1 ∇L ; // Gradient projection on L
2 {pt ∈ R+}Tt=1 ; // Weight factors

3 {yt ∈ R+}Tt=1 ; // Values of the given state variables

Ensure : A∗ ∈ Rn(m) ; // Optimal GLDM solution

4 z∗ ∈ RT ; // Residuals

5 p← {pt = 1 | t = 1, 2, . . . , T} ; // Initialize weight factors

6 (A(1), z(1))←WLDMSolver
(
S,∇L, {pt}Tt=1, {yt}Tt=1

)
;

7 for t← 1 to T do

8 pt ←
1

1 + (z
(1)
t )2

; // Update weight factors

9 (A(2), z(2))←WLDMSolver
(
S,∇L, {pt}Tt=1, {yt}Tt=1

)
;

10 k ← 2 ; // Initialize iteration counter

11 while A(k) 6= A(k−1) do
12 for t← 1 to T do

13 p
(k)
t ←

1

1 + (z
(k)
t )2

; // Update weight factors

14 (A, z)←WLDMSolver
(
S,∇L, {p(k)t }Tt=1, {yt}Tt=1

)
;

15 (A(k+1), z(k+1))← (A, z) ; // Store current solution

16 k ← k + 1 ; // Increment iteration counter

17 z∗ ← z(k);

18 A∗ ← A(k) ; // Final GLDM solution

19 return (A∗, z∗);

Theorem 7. Let {(A(k), z(k))}∞k=1 be the sequence generated by the GLDM-estimator algorithm.
This sequence converges to the global minimum (a∗, z∗) of the problem (37).

The GLDM-estimator algorithm has a computational complexity that is proportional to the
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complexity of solving the primal and/or dual WLDM problems (42). Multiple computational
experiments suggest that the average number of iterations of the GLDM-estimator algorithm is
approximately equal to the number of coefficients in the identified equation. If this hypothesis
holds true, then the computational complexity for solving practical problems does not exceed

O(n(m)3T + n(m) · T 2).

Proof. The convergence of the GLDM-estimator algorithm can be demonstrated by considering
the properties of the sequence generated by the algorithm.

From the concavity and differentiability of the function arctan, we have the inequality:

arctan |zt| > arctan |z| − |z|
1 + z2t

+
|zt|

1 + z2t
, for z 6= zt. (58)

Consider two consecutive iterations, Pk and Pk+1, of the problem (46)–(48), as solved by the
GLDM-estimator algorithm (see line 13 of Algorithm 3). These iterations differ only in their
sets of weight coefficients. The optimal solution for Pk, while correct for that iteration, may not
be optimal for Pk+1. We have:

T∑
t=1

|z(k)t |
1 + (z

(k)
t )2

≥
T∑
t=1

|z(k+1)
t |

1 + (z
(k)
t )2

, (59)

since the weights in Pk+1 are defined as{
p
(k)
t =

1

1 + (z
(k)
t )2

}
(see lines 9–12 of Algorithm 3).

From (58) and (59), it follows that:

T∑
t=1

arctan |z(k)t | ≥
T∑
t=1

arctan |z(k+1)
t |. (60)

Thus, the sequence 
T∑
t=1

arctan

∣∣∣∣∣∣yt −
n(m)∑
j=1

a
(k)
j gj{yt−k}mk=1

∣∣∣∣∣∣

k=0,1,...

monotonically decreases and is bounded below by zero. Therefore, this sequence must converge
to a unique limit point. The existence of a limit point for the sequence

{a(k)j }
n(m)
j=1 , k = 1, 2, . . . ,

follows from the continuity and monotonicity of the function arctan(·).
To prove that the limit point (a∗1, a

∗
2, . . . , a

∗
n(m)), constructed by Algorithm 3, is indeed the

global minimum, assume the contrary. Suppose that ã = (ã1, ã2, . . . , ãn(m)) is the global mini-
mum of the loss function (37), and

T∑
t=1

arctan |z̃t| <
T∑
t=1

arctan |z∗t |.

Clearly, (ã, z̃) is some limit point of the sequence constructed by Algorithm 3. From (58),
for z∗ 6= z̃, it follows that:

arctan |z̃t| − arctan |z∗t | >
|z̃t|

1 + z̃2t
− |z∗t |

1 + z̃2t
.
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On the other hand:

arctan |z̃t| − arctan |z∗t | =
|z̃t| − |z∗t |

1 + |z̃t| · |z∗t |
, t = 1, 2, . . . , T.

Therefore:
|z̃t| − |z∗t |

1 + |z̃t| · |z∗t |
>
|z̃t| − |z∗t |

1 + z̃2t
.

Consequently:

0 <
|z̃t| − |z∗t |

1 + |z̃t| · |z∗t |
− |z̃t| − |z

∗
t |

1 + z̃2t
= (|z̃t| − |z∗t |) ·

(
1

1 + |z̃t| · |z∗t |
− 1

1 + z̃2t

)
=

(|z̃t| − |z∗t |)
2 · |z̃t|

(1 + z̃2t ) · (1 + (z∗t )2)
, t = 1, 2, . . . , T.

This implies that |z̃t| > 0 for all t = 1, 2, . . . , T , which contradicts the assumption that
(a∗1, a

∗
2, . . . , a

∗
n(m)) is the global minimum.

Thus, by contradiction, the limit point (a∗1, a
∗
2, . . . , a

∗
n(m)) constructed by the algorithm is

indeed the global minimum.
The theorem is proved.

3.2 Predictor

Theorem 8. Let y[t]τ denote the predicted value of the variable yτ at time t generated by the
predictor algorithm 4, which constructs a family of m-th order difference equations. The sequence
of predicted values {y[t]τ}Tt=1 converges to a stable prediction horizon, and the prediction error

|yτ − y[t]τ | is minimized over this horizon.

Proof. The predictor constructs predictions using the m-th order difference equation, defined
as:

y[t]τ =

n(m)∑
j=1

ajgj ({yt−k}mk=1) , (61)

where: - y[t]τ is the predicted value of yτ at time t, - {aj}n(m)
j=1 are the coefficients derived

from the WLDM model, and - gj(·) are functions representing the relationship between past
observations {yt−k}mk=1 and the predicted value.

This equation models the forecast as a linear combination of previous values weighted by the
coefficients aj .

The predictor algorithm begins by setting the initial conditions:

y[1]τ = y1, y[2]τ = y2, . . . , y[m]τ = ym, (62)

where y1, y2, . . . , ym are the known initial values of the time series.
For t > m, the predictor uses the recursive relation:

y[t]τ =

n(m)∑
j=1

ajgj ({yt−k}mk=1) , (63)

to calculate each subsequent predicted value y[t]τ . The recursion ensures that each new predic-
tion is based on the most recent m values.

We now analyze the convergence of the sequence {y[t]τ}Tt=1. Define the prediction error at
each step as:

e[t] = |yτ − y[t]τ |. (64)

494



M. ABOTALEB: PROVING OPTIMAL MODEL SELECTION AND ZERO ...

The algorithm iteratively updates the prediction sequence until the error e[t] satisfies a
predefined threshold SZ:

e[t] ≤ SZ. (65)

If the error at any step t exceeds SZ, the algorithm adjusts the coefficients or updates the
prediction horizon, ensuring that the error decreases in subsequent steps.

We next show that the sequence {e[t]}Tt=1 is bounded and monotonic.
The error e[t] is bounded because the arctangent function arctan(x) used in the prediction

model has a bounded derivative: ∣∣∣∣ ddx arctan(x)

∣∣∣∣ =
1

1 + x2
≤ 1. (66)

Since the update of y[t]τ depends on the bounded function arctan(x), the changes in predictions
are also bounded. Consequently, the error e[t] cannot grow unbounded and remains within a
controlled range.

Monotonicity follows from the algorithm’s construction, where each update step is designed
to reduce the error e[t]. Specifically, the recursive updates minimize the prediction error over
time by adjusting the coefficients {aj} and recalculating y[t]τ iteratively.

Consider two successive predictions y[t]τ and y[t+ 1]τ . The error difference is given by:

e[t+ 1]− e[t] =
(
|yτ − y[t+ 1]τ |

)
−
(
|yτ − y[t]τ |

)
. (67)

Since the algorithm updates y[t+ 1]τ based on minimizing this difference, the sequence {e[t]} is
non-increasing:

e[t+ 1] ≤ e[t]. (68)

The total prediction error over the prediction horizon minFH is defined as:

E =
minFH∑
t=1

(
yt − y[t]τ

)2
. (69)

The algorithm seeks to minimize E by iteratively refining the predictions and adjusting the
prediction horizon. The process ensures that:

minFH = arg min
H

E, (70)

where H represents different candidate horizons, and minFH is the minimal feasible horizon at
which the error E is minimized.

The recursive nature of the algorithm guarantees that each prediction step leads to a reduc-
tion in E until convergence is achieved.

The sequence {y[t]τ}Tt=1 generated by the predictor algorithm converges to a stable horizon
minFH, where the prediction error E is minimized. This convergence is guaranteed by the
boundedness and monotonicity of the error sequence {e[t]}. Thus, the predictor algorithm
effectively forecasts the future values of the time series with minimized prediction error, proving
the theorem.

Predictor forms the indexed by t = 1, 2, . . . , T − 1, T family of the m-th order difference
equations (61) for lattice functions y[t] with values y[t]τ that interpreted as constructed at time
moment t the forecast for yτ . Let us use the solution of the Cauchy problem for its difference
equation (61) under the initial conditions (62) to find the values of the function y[t]. So we have

the set Y τ =
{
y[t]τ

}T
t=1

of possible prediction values of yτ . Further we use this set to estimate

the probabilistic characteristics of the yτ value. It should be written as Algorithm 4.
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Algorithm 4: Predictor

Require: Y = {yt ∈ R+}Tt=1 ; // Values of the given state variables

1 A = {ai}n(m)
i=1 ; // WLDM solution

Ensure : PY [1 : T ][1 : T ]: PY [t][τ ] = y[t]τ ; // Forecast for yτ at time moment t
2 E ; // Average prediction errors

3 D ; // Average absolute prediction errors

4 minFH ; // Relabel prediction horizon

5 Initialize variables;

6 while FH[Strt] < m do
Strt← Strt + 1;

PY [Strt][0]← Y [Strt];

PY [Strt][1]← Y [Strt + 1];
for t← Strt + 2 to m do

py ← 0;
for j ← 0 to n do

A1← G[j](PY [Strt][t− 1], PY [Strt][t− 2]);
R← a[j] ·A1;
py ← py +R;

PY [Strt][t]← py;
if |PY [Strt][t]− Y [Strt + t]| > SZ then

break;

FH[Strt]← t;

LastStrt← t;

minFH ← FH[Strt];

minFHp← minFH;
for t← 3 to Strt do

if minFH > FH[t] then
minFHp← FH[t];

minFH ← min(minFHp,minFH);
E ← 0;
D ← 0;

. minFHp is the reasonable horizon;
for t← 3 to minFH do

D ← D + fabs(Y [t+ Strt]− PY [Strt][t]);
E ← E + (Y [t+ Strt]− PY [Strt][t]);

D ← D/minFH;
E ← E/minFH;

return (D,E,minFH);

4 Description Model coefficients

A time series forecasting model employing the Generalized Least Deviation Method (GLDM) is
considered. The time series dataset is characterized as follows:

{yt}Tt=1 ⊂ R, (71)

where yt denotes a real-valued observation at time index t.

496



M. ABOTALEB: PROVING OPTIMAL MODEL SELECTION AND ZERO ...

The GLDM Estimator is utilized to determine an optimal set of coefficients {aj}n(m)
j=1 , which

minimize the objective function F (a), defined as the sum of the arctangents of absolute devia-
tions:

F (a) =

T∑
t=1

arctan

∣∣∣∣∣∣yt −
n(m)∑
j=1

ajgj({yt−k}mk=1)

∣∣∣∣∣∣ , (72)

with each function gj representing a unique combination of preceding values up to the m-th
order.

Within the quasi-linear model framework, the functions gj capture the influence of historical
data. These functions are defined as follows:

gj({yt−k}mk=1) = yt−j +
m∑
p=1
p6=j

yt−j · yt−p +
m∑
p=1

y2t−p, (73)

where yt−j signifies the lagged value of the series at time t − j. The first summation models
the interaction effects between different lagged values, while the second summation encapsulates
the non-linear effects through squared terms of the lagged values. These elements allow for the
modeling of complex dynamics within time series data.

The total count of coefficients for an m-th order model, which includes linear, interaction,
and quadratic components, is described by the following expression:

n(m) = m+

(
m

2

)
+m =

m(m+ 3)

2
. (74)

The structure and roles of these coefficients in the modeling process are detailed as follows:

• The term m refers to the linear coefficients, correlating each historical value with the
subsequent predicted value.

• The term
(
m
2

)
represents the interaction coefficients, denoting the pairwise combinations

between historical values, facilitating the detection of dependencies and interactions at
different time lags.

• The final term m denotes the quadratic coefficients, accommodating non-linear trends by
reflecting the self-interactions of the historical values.

4.1 First-Order Time Series Forecasting Model

A time series forecasting model incorporating only linear terms up to the first order is considered.
For a model where m = 1, it is determined that the total number of coefficients is two. These
coefficients are crucial for modeling the linear tendencies within the time series data.

For a first-order model (m = 1), the coefficients and their corresponding terms are enumer-
ated as follows:

• Linear term: yt−1

• Squared term: y2t−1

The generalized function gj for this model is explicitly defined in the following manner:

gj({yt−k}mk=1) =

{
yt−1 for j = 1,

y2t−1 for j = 2.

In this configuration, g1 is assigned to the linear term, and g2 to the squared term. This
structural arrangement effectively accounts for both the direct influence of the past value and
its non-linear impact on the present value.
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4.2 Second-Order Time Series Forecasting Model

A time series forecasting model that incorporates interaction and non-linear terms up to the
second order is considered. For a model where m = 2, it is determined that the total number of
coefficients is five. These coefficients comprise the linear terms, their squares, and the interaction
term between them, which are critical for modeling the linear tendencies and capturing the
potential synergistic and quadratic effects within the time series data.

For a second-order model (m = 2), the coefficients and their corresponding terms are enu-
merated as follows:

• Linear terms: yt−1, yt−2

• Squared terms: y2t−1, y
2
t−2

• Interaction term: yt−1 · yt−2

The generalized function gj for this model is explicitly defined in the following manner:

gj({yt−k}mk=1) =


yt−j for j = 1, 2,

yt−1 · yt−2 for j = 3,

y2t−j+2 for j = 4, 5.

(75)

In this configuration, g1 and g2 are assigned to the first and second linear terms, respectively,
g3 to the interaction term, and g4 and g5 to the squared terms of the first and second variables,
respectively. This structural arrangement effectively accounts for both the direct influences and
the interactions between the past two values, as well as their individual non-linear influences on
the present value.

4.3 Third-Order Time Series Forecasting Model

Interactions between past values in a time series are essential for capturing the dynamics and de-
pendencies inherent within the data. In a third-order model, denoted by m = 3, linear, squared,
and interaction terms are included, facilitating the modeling of complex non-linear behaviors.
This comprehensive approach enables the effective capture of intricacies and interdependencies
among historical values.

For a third-order model (m = 3), the coefficients and their corresponding terms are outlined
as follows:

• Linear terms: yt−1, yt−2, yt−3

• Squared terms: y2t−1, y
2
t−2, y

2
t−3

• Interaction terms: yt−1 · yt−2, yt−1 · yt−3, yt−2 · yt−3

The functions gj representing these terms in the third-order model are systematically defined
as follows:

gj({yt−k}mk=1) =



yt−j for j = 1, 2, 3,

y2t−j+3 for j = 4, 5, 6,

yt−1 · yt−2 for j = 7,

yt−1 · yt−3 for j = 8,

yt−2 · yt−3 for j = 9.

(76)

This model structure, incorporating linear, squared, and interaction terms, ensures a robust
representation of the time series dynamics. The inclusion of these terms aids in modeling more
complex nonlinear relationships that linear terms alone may not capture.
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The complete mathematical model of the time series, utilizing the coefficients defined above,
is given by the following equation:

yt =

9∑
j=1

ajgj({yt−k}mk=1) + εt, t = 1, 2, . . . , T (77)

Here, εt denotes the error term at time t, representing the unpredictable component not ex-
plained by the model.

4.4 Fourth-Order Time Series Forecasting Model

A time series forecasting model that leverages the intricacies of linear, interaction, and non-linear
dynamics up to the fourth order is considered. In a fourth-order model, denoted by m = 4, the
total count of coefficients is identified as 14. This ensemble encompasses the linear terms for the
four preceding observations, their squared counterparts, and the six unique interaction terms
between these observations, thereby encapsulating a comprehensive dynamic range within the
time series.

For a fourth-order model (m = 4), the coefficients and their corresponding terms are explic-
itly associated as follows:

• Linear terms: yt−1, yt−2, yt−3, yt−4

• Squared terms: y2t−1, y
2
t−2, y

2
t−3, y

2
t−4

• Interaction terms: All distinct pairwise combinations of the four variables

With 4 linear and 4 squared terms, and
(
4
2

)
= 6 interaction terms, the model integrates a

total of 14 coefficients.
The specific formulation of the function gj within the model, which embraces both linear

and interaction terms, is systematically defined as follows:

gj({yt−k}mk=1) =



yt−j for j = 1, 2, 3, 4,

yt−1 · yt−2 for j = 5,

yt−1 · yt−3 for j = 6,

yt−1 · yt−4 for j = 7,

yt−2 · yt−3 for j = 8,

yt−2 · yt−4 for j = 9,

yt−3 · yt−4 for j = 10,

y2t−j+6 for j = 11, 12, 13, 14.

(78)

In this model, g1 through g4 correspond to the linear terms, g5 through g10 to the interaction
terms, and g11 through g14 to the squared terms. This elaborate model configuration facilitates
an extensive incorporation of both the progressive and the interactive effects of the past ob-
servations, along with their individual non-linear influences, thus significantly augmenting the
predictive capabilities of the time series model.

4.5 Fifth-Order Time Series Forecasting Model

A comprehensive time series forecasting model that integrates both linear and nonlinear dynam-
ics up to the fifth order is considered. Within a fifth-order framework, symbolized by m = 5, a
constellation of 20 coefficients is identified. These coefficients comprise the linear terms for the
five antecedent observations, their individual squared terms, and the interaction terms among
these observations, thereby capturing a multidimensional dynamic within the time series.
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For a fifth-order model (m = 5), the assortment of coefficients is meticulously associated
with their respective terms as cataloged below:

• Linear terms: yt−1, yt−2, yt−3, yt−4, yt−5

• Squared terms: y2t−1, y
2
t−2, y

2
t−3, y

2
t−4, y

2
t−5

• Interaction terms: All distinct pairwise combinations of the five variables

Accounting for 5 linear terms, 5 squared terms, and
(
5
2

)
= 10 interaction terms, the model

features an aggregate of 20 coefficients.

The formalized expression of the function gj within the model, encapsulating both the linear
and interaction terms, is articulated as follows:

gj({yt−k}mk=1) =



yt−j for j = 1, . . . , 5,

yt−1 · yt−2 for j = 6,

yt−1 · yt−3 for j = 7,
...

yt−4 · yt−5 for j = 14,

y2t−j+9 for j = 15, . . . , 20.

(79)

In this delineation, g1 to g5 are assigned to the linear terms, g6 to g14 to the interaction
terms, and g15 to g20 to the squared terms. This expansive framework not only contemplates
the sequential impact of the prior observations but also scrutinizes the combinative and quadratic
interactions, thereby substantively refining the forecasting strength of the time series analysis.

5 Sparsity in Coefficients of Time Series Models

In the context of time series forecasting using higher-order models, it is often observed that
some coefficients may be zero. This phenomenon can be attributed to several mathematical
and statistical reasons, which are crucial for optimizing the model’s predictive accuracy and
computational efficiency. We discuss the primary factors that lead to zero coefficients in some
cases.

5.1 Data Characteristics and Redundancy

In some scenarios, the inherent characteristics of the time series data can lead to zero coefficients.
If certain lagged values or interactions do not significantly contribute to predicting the future
values, the optimization algorithm might set their corresponding coefficients to zero. This is
particularly common when:

• There is multicollinearity among predictors, causing redundancy.

• Some features are irrelevant for prediction.

5.2 Mathematical Proof of Coefficient Reduction

Theorem 9. In the Generalized Least Deviation Method (GLDM), a coefficient aj in the model
can be reduced to zero if the gradient of the objective function F (a) with respect to aj is zero.
This occurs when the contribution of aj to the overall prediction error is negligible, allowing the
model to retain its predictive accuracy while simplifying the model.
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Proof. Let F (a) denote the objective function defined as:

F (a) =
T∑
t=1

arctan |yt − f(xt,a)| , (80)

where:

• yt ∈ R is the actual value of the time series at time t,

• xt ∈ Rn is the vector of input variables at time t,

• f(xt,a) is the predicted value at time t based on the model, with a = {a1, a2, . . . , an(m)}
being the vector of coefficients.

Step 1: Gradient of the Objective Function To determine the conditions under which
a coefficient aj can be reduced to zero, we begin by computing the partial derivative of the
objective function F (a) with respect to aj :

∂F

∂aj
=

T∑
t=1

∂

∂aj
arctan |yt − f(xt,a)| . (81)

Step 2: Application of the Chain Rule Using the chain rule, the partial derivative can
be expanded as:

∂F

∂aj
=

T∑
t=1

1

1 + (yt − f(xt,a))2
· ∂

∂aj
(yt − f(xt,a)) . (82)

Here, the first term 1
1+(yt−f(xt,a))

2 is the derivative of the arctangent function, which acts as

a scaling factor that weights the contribution of each residual yt − f(xt,a) to the gradient.

Step 3: Derivative of the Prediction Function Next, we calculate the derivative of the
prediction function f(xt,a) with respect to the coefficient aj :

∂

∂aj
(yt − f(xt,a)) = −∂f(xt,a)

∂aj
. (83)

The negative sign indicates that the derivative of the residual with respect to aj is directly
proportional to the derivative of the prediction function.

Step 4: Substituting into the Gradient Expression Substituting equation (83) into
equation (82), we obtain:

∂F

∂aj
= −

T∑
t=1

1

1 + (yt − f(xt,a))2
· ∂f(xt,a)

∂aj
. (84)

This equation expresses the gradient of the objective function with respect to aj as a weighted
sum of the derivatives of the prediction function.

Step 5: Second-Order Derivative Analysis We now consider the second derivative of
the objective function with respect to aj , which helps in assessing the minimal influence of aj
on the objective function:

∂2F

∂a2j
=

T∑
t=1

−2
(
∂f(xt,a)
∂aj

)2
(

1 + (yt − f(xt,a))2
)2 . (85)
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Step 6: Condition for Coefficient Reduction For aj to be reduced to zero, the gradient
∂F
∂aj

must be equal to zero and the second derivative ∂2F
∂a2j

should be approximately zero:

∂F

∂aj
= 0 and

∂2F

∂a2j
≈ 0. (86)

This condition indicates that the contribution of aj to the overall objective function is min-
imal, meaning that setting aj = 0 will not significantly affect the model?s performance.

Step 7: Interpretation and Implications When the condition in equation (86) is satis-
fied, setting aj = 0 will not degrade the performance of the model. This simplification reduces
the number of active parameters in the model, leading to a more parsimonious model. The
benefits of this reduction include:

• Increased Model Interpretability: Fewer active coefficients make the model easier to
interpret.

• Improved Computational Efficiency: Reducing the number of parameters decreases
the computational burden, especially in high-dimensional settings.

• Avoidance of Overfitting: Eliminating coefficients that do not contribute to the model
reduces the risk of overfitting, leading to better generalization on unseen data.

Conclusion The mathematical conditions ∂F
∂aj

= 0 and ∂2F
∂a2j
≈ 0 provide a rigorous basis

for the reduction of coefficients in the GLDM framework. When these conditions are met, the
coefficient aj can be safely set to zero, enhancing the efficiency and interpretability of the model
without compromising its predictive performance. This result underscores the importance of
analyzing both the first and second derivatives of the objective function to guide the model
simplification process.

5.3 Mathematical Proof of Optimal Model Order Selection in GLDM

Theorem 10. Let {yt}Tt=1 be a time series, and let the function F (a) be defined as:

F (a) =

T∑
t=1

arctan |yt − f(xt,a)| ,

where the function f depends on the parameter a. Then the optimal model order m∗ is given by:

m∗ = arg min
m

(
min
a
F (a,m)

)
.

Proof. Consider the differentiable function F (a) and its first derivatives. The gradient of the
function F (a) is given by:

∂F

∂aj
=

T∑
t=1

−1

1 + (yt − f(xt,a))2
· ∂f(xt,a)

∂aj
,

which equals zero at critical points, where ∇F (a) = 0.

The Hessian of the function F (a), the matrix of second derivatives, is given by:

H(a) =

[
∂2F

∂ai∂aj

]
=

T∑
t=1

 −2∂f(xt,a)
∂ai

∂f(xt,a)
∂aj(

1 + (yt − f(xt,a))2
)2 +

∂2f(xt,a)
∂ai∂aj

1 + (yt − f(xt,a))2

 .
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Now, consider the differentiable function F (a) defined on the parameter space a. Let a0 be
a critical point of this function, where the gradient ∇F (a0) = 0.

The Hessian matrix H(a0), representing the second derivatives of F (a) at a0, is computed
as:

H(a0) =

T∑
t=1

 −2∂f(xt,a0)
∂ai

∂f(xt,a0)
∂aj(

1 + (yt − f(xt,a0))
2
)2 +

∂2f(xt,a0)
∂ai∂aj

1 + (yt − f(xt,a0))
2

 .

The Hessian matrix H(a0), evaluated as the matrix of second derivatives at the point a0, is
given by:

H(a0) =

 H11 · · · H1n
...

. . .
...

Hn1 · · · Hnn

 ,

where each element Hij is determined by:

Hij =
T∑
t=1

 −2∂f(xt,a0)
∂ai

∂f(xt,a0)
∂aj(

1 + (yt − f(xt,a0))
2
)2 +

∂2f(xt,a0)
∂ai∂aj

1 + (yt − f(xt,a0))
2

 .

To analyze the positive definiteness of the matrix H(a0), consider the quadratic form:

v>H(a0)v =
n∑
i=1

n∑
j=1

vivj

 T∑
t=1

 −2∂f(xt,a0)
∂ai

∂f(xt,a0)
∂aj(

1 + (yt − f(xt,a0))
2
)2 +

∂2f(xt,a0)
∂ai∂aj

1 + (yt − f(xt,a0))
2


 ,

where v = (v1, . . . , vn) is an arbitrary non-zero vector.

The positive definiteness of H(a0) implies that for all non-zero v, the expression v>H(a0)v
is strictly greater than zero. This is achieved if the sum of the positive terms, associated with

the second derivatives ∂2f(xt,a)
∂ai∂aj

, exceeds the sum of the negative terms, arising from the products

of the first derivatives ∂f(xt,a)
∂ai

∂f(xt,a)
∂aj

.

Thus, we can conclude that if H(a0) > 0 for all non-zero vectors v, then the matrix H(a0)
is positive definite, and therefore, a0 is a point of local minimum for the function F (a).

In this theorem, the conditions for determining the optimal model order m∗ for the time
series {yt}Tt=1 using the loss function F (a) are formulated. The function F (a) is computed as
the sum of the arctangents of the absolute deviations between the observed values yt and the
predicted values f(xt,a). The optimal order m∗ minimizes this function, selecting the best
compromise between model complexity and forecast accuracy.
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5.4 Algorithm Implementation Using GLDM

Algorithm 5: Determine Coefficients Using GLDM for Variable Order Models

Require: Y = {yt ∈ R+}Tt=1 ; // Values of the given state variables

1 m ; // Model order

2 Predefined functions {gj}
Ensure : Coefficient vector a that minimizes the GLDM objective

3 Function DefineFunctions(m):
4 for j ← 1 to m do
5 gj({yt−k}mk=1)← yt−j ; // Linear terms

6 for j ← m+ 1 to m+
(
m
2

)
do

7 Define gj for interaction terms

8 for j ← m+
(
m
2

)
+ 1 to m(m+3)

2 do

9 gj({yt−k}mk=1)←
(
yt−j+m+(m2 )

)2
; // Squared terms

10 return {gj}n(m)
j=1

11 Function GLDMFit(Y,m):

12 n(m)← m(m+3)
2 ; // Calculate the number of coefficients

13 ;
14 {gj} ← DefineFunctions(m);
15 Initialize vector a of length n(m) to zeros;
16 Define F (a) as in Equation (3);
17 for j ← 1 to n(m) do
18 Initialize aj ;

19 while not converged do
20 for t← 1 to T do

21 rt ← yt −
∑n(m)

j=1 aj · gj({yt−k}mk=1) ; // Calculate residual

22 ;
23 Update aj by minimizing arctan |rt| for each j;

24 Check for convergence;

25 return a ; // Return the optimized coefficient vector

26 a← GLDMFit(Y, m) ; // Fit the model using GLDM

27 ;
28 Output the coefficients vector a;

The algorithm 5 implemented using the Generalized Least Deviation Method (GLDM) is
structured to efficiently determine coefficients for a variable order time series model. Below is a
detailed breakdown of the algorithmic procedure:

1. Initialization and Function Definition: The algorithm starts by defining necessary
functions based on the given model order m. It systematically generates linear terms,
interaction terms, and squared terms for each level of m, setting the stage for the model’s
response to historical data patterns.

2. Coefficient Initialization: It initializes a vector of coefficients a, which are crucial as
they will be optimized to fit the time series data effectively.

3. Objective Function Formulation: The heart of the algorithm is the objective function
F (a), designed to be minimized. This function is computed as the sum of arctangents of
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the residuals, where residuals are the differences between the actual data points and the
models predictions based on current coefficients.

4. Optimization Loop: Through iterative processes, the algorithm adjusts each coefficient
to minimize F (a). For each time point, it computes the residual and updates the coeffi-
cients to reduce these residuals, leveraging the arctangent function for robustness against
outliers.

5. Convergence Evaluation: The iterative adjustment continues until the change in coeffi-
cients between successive iterations is minimal, indicating convergence and optimal fitting.

6. Output Generation: Upon convergence, the algorithm outputs the optimized coefficient
vector a, which is then utilized for model predictions or further analysis.

This method is particularly adept at handling time series data with irregularities or non-
standard distributions, ensuring enhanced predictive accuracy and model robustness.

5.5 Algorithm for Identifying Zero Coefficients in GLDM

The algorithm 6 is structured to identify and potentially zero out some coefficients in a time
series forecasting model using the Generalized Least Deviation Method (GLDM). Here is a
simplified breakdown of the algorithmic steps:

1. Initialization: The algorithm calculates the necessary number of coefficients, n(m) =
m(m+3)

2 , where m is the model order. It initializes these coefficients to zero and sets up
the objective function, F (a), which aims to minimize the cumulative arctangent of the
absolute differences between actual time series data {yt} and the model’s predictions.

2. Gradient Calculation: For each coefficient aj , the gradient of the objective function
with respect to aj is computed. This gradient indicates how small changes in aj affect
F (a), guiding the coefficient updates.

3. Coefficient Update: If the absolute value of a coefficient’s gradient is below a small
threshold ε, that coefficient is set to zero. This is based on the rationale that if the
gradient is minimal, the coefficient’s impact on the model is negligible, and zeroing it
simplifies the model without significantly impacting its effectiveness.

4. Convergence Check: The algorithm iterates, updating coefficients until changes in the
objective function F (a) are negligible, indicating convergence.

5. Output: Upon convergence, the algorithm outputs the optimized coefficient vector a,
where some coefficients may be zero, reflecting a potentially simpler and more interpretable
model.

This methodology is particularly useful in scenarios where balancing model complexity and
interpretability with accuracy is crucial, allowing for a streamlined model that efficiently captures
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the essential dynamics of the data.

Algorithm 6: Identification of Zero Coefficients in GLDM Models

Require: Y = {yt ∈ R+}Tt=1 ; // Values of the given state variables

1 m ; // Model order

Ensure : Coefficient vector a with possibly zero elements where appropriate
2 Function GLDMFit(Y,m):

3 n(m)← m(m+3)
2 ; // Calculate the number of coefficients

4 ;
5 Initialize vector a of length n(m) to zeros;
6 Define the objective function F (a) as:

F (a) =
T∑
t=1

arctan

∣∣∣∣∣∣yt −
n(m)∑
j=1

aj · gj ({yt−k}mk=1)

∣∣∣∣∣∣
while not converged do

; // Iteratively minimize F (a)
7 for j ← 1 to n(m) do
8 Calculate the gradient ∇Faj ;
9

∇Faj =
∂

∂aj

T∑
t=1

arctan

∣∣∣∣∣∣yt −
n(m)∑
k=1

ak · gk ({yt−i}mi=1)

∣∣∣∣∣∣
if |∇Faj | < ε then

10 aj ← 0 ; // Set coefficient to zero if gradient is negligible

11 ;

12 Check for convergence ; // Based on the change in F (a)
13 ;

14 return a ; // Return the optimized coefficient vector

15 a← GLDMFit(Y, m) ; // Fit the model using GLDM

16 ;
17 Output the coefficients vector a;

6 Soft computing Results

The datasets employed in our analysis are summarized in Table 1, which details their respective
lengths. The datasets include NDVI with 15 data points, Temperature with 9,939 data points,
Wind Speed recorded with 50,530 data points, and COVID-19 death cases in the Russian Feder-
ation, which consist of 882 data points. This variation in dataset sizes reflects the diverse scope
and scale of environmental and epidemiological data considered in our time series forecasting
models. The extensive data length, particularly for Temperature and Wind Speed, provides a
robust basis for statistical analysis and model validation.

Table 1: List of used datasets and their lengths

Dataset Length

NDVI 15

Temperature 9,939

Wind Speed 50,530

COVID-19 deaths Cases in the Russian Federation 882
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Table 2 summarizes the performance metrics of various models applied to NDVI data. The
Multilayer Perceptron (MLP) model demonstrates moderate performance, with an RMSE of
0.34, MSE of 0.12, MAE of 0.25, an R-squared value of 0.47, and a relatively high MAPE of
51.71%. The Support Vector Machine (SVM) model shows notable improvement, achieving an
RMSE of 0.08, MSE of 0.01, MAE of 0.08, an R-squared value of 0.59, and a MAPE of 14.74%.
The AutoARIMA model performs well, with an RMSE of 0.07, MSE of 0.00, MAE of 0.03,
an R-squared value of 0.74, and a MAPE of 8.50%. The Exponential Smoothing model excels
with an RMSE of 0.03, MSE of 0.00, MAE of 0.02, an R-squared value of 0.95, and a MAPE
of 4.17%. The BATS model provides moderate results, with an RMSE of 0.10, MSE of 0.01,
MAE of 0.07, an R-squared value of 0.36, and a MAPE of 16.53%. The TBATS model performs
very well, with an RMSE of 0.04, MSE of 0.01, MAE of 0.03, an R-squared value of 0.90, and
a MAPE of 6.99%. The Prophet model exhibits moderate performance, with an RMSE of 0.12,
MSE of 0.01, MAE of 0.10, an R-squared value of 0.17, and a MAPE of 20.37%. The Hybrid
AutoARIMA-Exponential Smoothing model shows strong performance, with an RMSE of 0.06,
MSE of 0.00, MAE of 0.04, an R-squared value of 0.76, and a MAPE of 9.45%. Similarly, the
Hybrid AutoARIMA-Polynomial model performs well, with an RMSE of 0.06, MSE of 0.00,
MAE of 0.03, an R-squared value of 0.80, and a MAPE of 8.42%. Notably, the GLDM Second
Order model outperforms all other models, achieving the lowest RMSE of 0.02, MSE of 0.00,
MAE of 0.01, the highest R-squared value of 0.96, and the lowest MAPE of 2.16%, indicating
superior accuracy and reliability.

Table 2: Performance Metrics for Various Models for NDVI

Model RMSE MSE MAE R-Squared MAPE

MLP Model 0.34 0.12 0.25 0.47 51.71%

SVM Model 0.08 0.01 0.08 0.59 14.74%

Autoarima Model 0.07 0.00 0.03 0.74 8.50%

Exponential Smoothing Model 0.03 0.00 0.02 0.95 4.17%

BATS Model 0.10 0.01 0.07 0.36 16.53%

TBATS Model 0.04 0.01 0.03 0.90 6.99%

Prophet Model 0.12 0.01 0.10 0.17 20.37%

Hybrid auto arima-ES 0.06 0.00 0.04 0.76 9.45%

Hybrid auto arima-Polynomial 0.06 0.00 0.03 0.80 8.42%

GLDM Second Order 0.02 0.00 0.01 0.96 2.16%

The performance metrics for various models applied to temperature data are summarized in
Table 3. The MLP Model shows moderate performance with an RMSE of 4.60, MSE of 21.17,
MAE of 3.62, R-squared of 0.37, and a high MAPE of 29.17%. The SVM Model outperforms
all other models with an RMSE of 0.40, MSE of 0.16, MAE of 0.24, R-squared of 0.99, and a
low MAPE of 1.80%. The Autoarima Model performs well, achieving an RMSE of 0.92, MSE
of 0.85, MAE of 0.62, R-squared of 0.97, and a MAPE of 4.54%. The Exponential Smoothing
Model shows good performance with an RMSE of 1.05, MSE of 1.10, MAE of 0.70, R-squared
of 0.97, and a MAPE of 4.98%. The BATS Model performs well with an RMSE of 0.96, MSE
of 0.91, MAE of 0.59, R-squared of 0.97, and a MAPE of 4.25%. The TBATS Model also shows
strong performance with an RMSE of 0.71, MSE of 0.50, MAE of 0.45, R-squared of 0.99, and a
MAPE of 3.23%. The Prophet Model shows moderate performance with an RMSE of 4.03, MSE
of 16.22, MAE of 3.12, R-Squared of 0.52, and a MAPE of 23.49%. The Hybrid auto arima-ES
and Hybrid auto arima-Polynomial Models both show good performance with an RMSE of 0.93
and 0.92, MSE of 0.86 and 0.85, MAE of 0.62, R-squared of 0.97, and a MAPE of 4.54%. The
GLDM Fifth Order Model shows strong performance with an RMSE of 0.94, MSE of 0.88, MAE
of 0.58, R-squared of 0.97, and a MAPE of 4.12%.

Table 4 presents the performance metrics for various models used in predicting wind speed.
The table includes key indicators such as Root Mean Square Error (RMSE), Mean Squared Error
(MSE), Mean Absolute Error (MAE), R-squared, and Mean Absolute Percentage Error (MAPE)
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Table 3: Performance Metrics for Various Models for Temperature

Model RMSE MSE MAE R-Squared MAPE

MLP Model 4.60 21.17 3.62 0.37 29.17%

SVM Model 0.40 0.16 0.24 0.99 1.80%

Autoarima Model 0.92 0.85 0.62 0.97 4.54%

Exponential Smoothing Model 1.05 1.10 0.70 0.97 4.98%

BATS Model 0.96 0.91 0.59 0.97 4.25%

TBATS Model 0.71 0.50 0.45 0.99 3.23%

Prophet Model 4.03 16.22 3.12 0.52 23.49%

Hybrid auto arima-ES 0.93 0.86 0.62 0.97 4.54%

Hybrid auto arima-Polynomial 0.92 0.85 0.62 0.97 4.54%

GLDM Fifth Order 0.94 0.88 0.58 0.97 4.12%

for each model. The GLDM Second Order model demonstrates the best overall performance
with the lowest RMSE of 0.74, MSE of 0.55, and MAE of 0.52. It also achieves the highest
R-squared value of 0.97, indicating it explains 97% of the variance in the wind speed data.
Additionally, it has the lowest MAPE of 9.50%, reflecting high accuracy in predictions. The
Autoarima and Exponential Smoothing models also show strong performance with RMSE values
of 0.7453 and 0.7493, respectively, and R-squared values close to the GLDM model at 0.9689
and 0.9686. Their MAPE values are 10.00% and 9.99%, respectively, indicating good predictive
accuracy. The SVM model performs well with an RMSE of 0.80 and an R-squared value of
0.96. However, its MAPE of 12.13% is slightly higher compared to the GLDM and Autoarima
models. In contrast, models like the MLP and TBATS show less accurate predictions with
higher RMSE and MAPE values. The MLP model has an RMSE of 5.070 and a very high
MAPE of 102.61%, while the TBATS model has an RMSE of 4.6 and a MAPE of 24.36%. The
Prophet model, Hybrid auto arima-ES, and Hybrid auto arima-Polynomial models also show
relatively higher RMSE and MAPE values, indicating lower predictive performance compared
to the top-performing models. In summary, the GLDM Second Order model stands out as the
most effective for wind speed prediction, providing the highest accuracy and reliability among
the models evaluated.

Table 4: Performance Metrics for Various Models for Wind Speed

Model RMSE MSE MAE R-Squared MAPE

MLP Model 5.070 25.70 4.05 0.04969 102.61%

SVM Model 0.80 0.64 0.638 0.96 12.13%

Autoarima Model 0.7453 0.5555 0.5209 0.9689 10.00%

Exponential Smoothing Model 0.7493 0.5614 0.5226 0.9686 9.99%

BATS Model 2.4 5.76 1.915 0.30 19.15%

TBATS Model 4.6 21.16 3.671 0.45 24.36%

Prophet Model 3.8472 14.8009 3.0759 0.1717 78.03%

Hybrid auto arima-ES 0.90 0.81 0.718 0.19 71.80%

Hybrid auto arima-Polynomial 0.88 0.7744 0.702 0.2254 70.20%

GLDM Second Order 0.74 0.55 0.52 0.97 9.50%

Overall, the performance analysis demonstrates that the high-order quasilinear equations de-
veloped using the Generalized Least Deviation Method (GLDM) consistently outperform the lat-
est models across various datasets, including NDVI, temperature, and wind speed. The GLDM
models exhibit superior accuracy and reliability, evidenced by lower RMSE, MSE, and MAPE
values, and higher R-Squared values. In the NDVI dataset, the GLDM models demonstrate
exceptional performance, significantly reducing error metrics while maintaining high R-Squared
values. This highlights the GLDM’s effectiveness in capturing the intricate dynamics of NDVI
data, providing reliable and precise predictions. In the temperature dataset, the GLDM Fifth
Order model shows strong performance, but the SVM model outperforms all other models,
achieving the best metrics across all evaluated criteria. The SVM model’s exceptional perfor-
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mance is attributed to its ability to effectively handle high-dimensional data and capture complex
non-linear relationships, resulting in low error metrics and a high R-Squared value. Additionally,
the TBATS model demonstrates superior performance in temperature prediction with a strong
ability to capture seasonal patterns and complex trends, leading to low error metrics and high
R-Squared values. In the wind speed dataset, the GLDM Second Order model excels, achieving
the best metrics across all evaluated criteria. This model’s effectiveness is reflected in its re-
markably low error metrics and high R-Squared value, indicating a robust capability to capture
the underlying patterns and dynamics of wind speed data. The robust performance of GLDM
models across diverse datasets highlights their ability to manage outliers and non-standard error
distributions, making them a reliable and effective approach for complex, non-linear data. These
results underscore the robustness and effectiveness of the GLDM approach in handling diverse
datasets and highlight the superior capabilities of the SVM and TBATS models for temperature
prediction.

Table 5 details the performance of different models for COVID-19 deaths in the Russian
Federation. The GLDM second-order model demonstrates superior performance, evidenced by
its high R2 value of 0.9898 and a notably low MAPE of 10.96%. This performance is remarkable
when compared to other models, such as the MLP model, which has an R2 of 0.0446 and
a MAPE of 167.1630%, and the SVM model, which shows an R2 of 0.9742 and a MAPE of
17.3852%. The Auto ARIMA model and its hybrid variants also perform well, with R2 values
around 0.9917 and MAPEs just above 11%, but they do not surpass the accuracy of the GLDM
second-order model. Similarly, the BATS and TBATS models, both with R2 values of 0.9921
and MAPEs of 11.0584%, and the Prophet model, which has an R2 of 0.9746 and a significantly
higher MAPE of 53.7971%, also fall short in comparison. This illustrates the robustness of the
GLDM second-order model in providing precise and reliable predictions for COVID-19 deaths
in the region.

The mathematical advantages of the GLDM second-order model extend beyond its ability
to incorporate higher-order terms. Its optimization framework, which strategically minimizes
a well-defined loss function through the use of the arctangent, enhances the model’s ability to
adapt to new data and maintain high accuracy. The inclusion of second-order terms is crucial
for capturing the complexities and nuances of time series data, making the GLDM particularly
effective for modeling the nonlinear and stochastic nature of COVID-19 dynamics. This advanced
methodological approach allows the GLDM second-order model to outperform other models,
making it a critical tool for public health planning and intervention.

In summary, the GLDM second-order model not only demonstrates superior accuracy and
reliability in forecasting COVID-19 infection cases in the Samara Region but also excels in
predicting COVID-19 deaths in the Russian Federation, outperforming a range of other pre-
dictive models. Its advanced methodological approach, which incorporates higher-order terms
and robust optimization techniques, allows it to capture complex patterns and dependencies
with greater precision. These optimized performance metrics make the GLDM second-order
model an indispensable tool in the ongoing efforts to model and understand the dynamics of the
COVID-19 pandemic, providing critical insights for public health strategies and interventions.

Table 6 summarizes the number of coefficients required for time series forecasting models of
varying orders, from first to fifth. Specifically, the table enumerates the coefficients as 2, 5, 9,
14, and 20 for the first through fifth orders, respectively. This progression is governed by the
formula n(m) = 2m +

(
m
2

)
= m(m+3)

2 , which calculates the total count of coefficients including
linear, interaction, and quadratic terms as the model order increases. The structured increase in
coefficients highlights the model’s growing complexity and capacity to encapsulate more intricate
dynamics within the time series data.
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Table 5: Error Metrics (R-Squared and MAPE) for Various Models for COVID-19 Deaths in Russian
Federation

Model R-Squared MAPE (%)

MLP model 0.0446 167.1630

SVM model 0.9742 17.3852

Auto ARIMA model 0.9917 11.0454

Exponential Smoothing model 0.9898 11.1647

BATS model 0.9921 11.0584

TBATS model 0.9921 11.0584

Prophet model 0.9746 53.7971

Hybrid autoARIMA+ES 0.9915 11.2055

Hybrid autoARIMA+Polynomial 0.9917 11.0749

GLDM Second Order 0.9898 10.9600

Table 6: Number of Coefficients by Order

Order First Second Third Fourth Fifth

Coefficients 2 5 9 14 20

n(m) = 2m+
(
m
2

)
= m(m+3)

2

The tables from 7 to 11 present the coefficients for the Generalized Least Deviation Method
(GLDM) applied to the Normalized Difference Vegetation Index (NDVI) data across different
model orders, from first through fifth. Each table, corresponding to the model order, lists
the coefficients derived from fitting the GLDM model to the NDVI dataset. Table 7 starts
with the simplest model, featuring only two coefficients, a1 and a2. As the model complexity
increases, more coefficients are introduced to capture additional dynamics of the data, evident
in Table 8 for the second order and further expanded in Tables 9, 10, and 11 for higher orders.
These coefficients are crucial for understanding the NDVI time series’ behavior and improving
prediction accuracy. Notably, as the order increases, the number of coefficients grows, reflecting
the model’s enhanced capability to incorporate more historical data points and interactions
within the NDVI time series.

Table 7: GLDM First Order Coefficients for NDVI

Coefficient Value

a1 1.7073

a2 -1.0511

Table 8: GLDM Second Order Coefficients for NDVI

Coefficient Value

a1 3.4694

a2 -2.1864

a3 -5.5924

a4 -2.5635

a5 7.7299

The coefficients derived from applying the Generalized Least Deviation Method (GLDM)
for the temperature data set are systematically presented in Tables 12 through 16. These
tables enumerate the coefficients for models of increasing order from first to fifth. Table 12
lists the coefficients for the first order model, indicating the foundational linear influences in
the temperature data. Progressing to higher model orders, Table 13 and Table 14 introduce
additional coefficients, capturing more complex dynamics and interactions within the data. This
trend continues with Table 15, where the fourth order model incorporates even more coefficients,
enhancing the model’s ability to forecast with greater precision. Finally, Table 16 presents
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Table 9: GLDM Third Order Coefficients for NDVI

Coefficient Value

a1 -9.6495

a2 -16.2326

a3 29.1697

a4 76.3993

a5 122.9467

a6 -71.5312

a7 -229.9915

a8 98.9790

a9 0.0000

Table 10: GLDM Fourth Order Coefficients for NDVI

a1 a2 a3 a4 a5 a6 a7
-21.8416 52.4809 30.7212 -48.3575 -132.0576 -177.0664 4.7422

a8 a9 a10 a11 a12 a13 a14
-2.5712 273.2420 -66.8228 83.1160 0.0000 0.0000 0.0000

the coefficients for the fifth order model, which encompasses the most comprehensive dynamic
range, utilizing twenty coefficients to capture nuanced patterns and potential non-linearities in
the temperature series. Each table reflects the incremental complexity and enhanced predictive
capability as the order of the model increases.

Tables 17 and 18 detail the coefficients for first and second order models applied to wind
speed data using a specific modeling technique. Table 17 displays the coefficients for the first
order model, capturing the most immediate past influence with coefficients a1 and a2. Moving
to a more complex model, Table 18 lists the coefficients for the second order model, which
considers additional past values to better capture the dynamics and potential patterns in wind
speed variations. This model includes more coefficients (a1 to a5), thereby providing a richer,
more nuanced understanding of the influence of past wind speeds on future predictions. The
expansion in the number of coefficients from the first to the second order model reflects an
increase in model complexity and potential predictive power.

Tables 19, 20, and 21 illustrate the coefficients determined by the Generalized Least Devi-
ation Method (GLDM) for analyzing death cases in Russia across three different model orders.
Table 19 lists the coefficients for the first order model, suggesting a simplistic model where the
primary coefficient a1 is 1.0000, indicating a direct influence of the immediate past value on
the future value with minimal adjustment (a2 is 0.0000). As the model complexity increases,
Table 20 provides five coefficients for a second order model, incorporating more nuanced inter-
actions and trends in the data. The third order model, shown in Table 21, further expands this
complexity by including nine coefficients, thus offering a more detailed and intricate depiction
of the dynamics influencing the death rates. These tables collectively represent a progression in
model sophistication and predictive potential, adapting to the increasing complexity required to
accurately model the temporal dynamics of death cases.

Table 11: GLDM Fifth Order Coefficients for NDVI

a1 a2 a3 a4 a5
0.0000 -29.0004 64.0513 -44.3069 10.2588

a6 a7 a8 a9 a10
1.7283 -23.5562 -90.7331 30.3171 -6.6379

a11 a12 a13 a14 a15
-2.0578 90.0347 0.0000 0.0000 0.0000

a16 a17 a18 a19 a20
0.0000 0.0000 0.0000 0.0000 0.0000
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Table 12: GLDM First Order Coefficients for Temperature

Coefficient Value

a1 1.0159

a2 -0.0009

Table 13: GLDM Second Order Coefficients for Temperature

Coefficient Value

a1 1.0498

a2 -0.0302

a3 0.0229

a4 0.0098

a5 -0.0340

Table 14: GLDM Third Order Coefficients for Temperature

Coefficient Value

a1 -0.1658

a2 0.0395

a3 1.1547

a4 0.0362

a5 0.0298

a6 0.0175

a7 -0.0489

a8 -0.0365

a9 0.0000

Table 15: GLDM Fourth Order Coefficients for Temperature

a1 a2 a3 a4 a5 a6 a7
1.1661 -0.3931 1.6191 -1.2894 -0.0031 0.1141 -0.1237

a8 a9 a10 a11 a12 a13 a14
-0.0320 -0.0594 0.1424 -0.0881 -0.2193 0.1068 0.1502

Table 16: GLDM Fifth Order Coefficients for Temperature

a1 a2 a3 a4 a5
0.0000 1.0667 -0.4329 1.4878 -0.7536

a6 a7 a8 a9 a10
-0.2734 0.0154 0.0804 0.0679 0.0827

a11 a12 a13 a14 a15
0.0083 -0.0745 -0.0029 0.0609 -0.0092

a16 a17 a18 a19 a20
-0.1386 0.0510 0.0560 -0.1933 0.0442

Table 17: First Order Coefficients for Wind Speed

Coefficient Value

a1 1.0092

a2 -0.0011

Table 18: Second Order Coefficients for Wind Speed

Coefficient Value

a1 0.9300

a2 0.0764

a3 0.0248

a4 0.0241

a5 -0.0499
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Table 19: First Order GLDM Model Coefficients for Death Cases in Russia

Coefficient Value

a1 1.0000

a2 0.0000

Table 20: Second Order GLDM Model Coefficients for Death Cases in Russia

Coefficient Value

a1 0.7265

a2 0.2610

a3 0.0020

a4 0.0016

a5 -0.0036

6.1 Analysis of Model Orders and Coefficients

The selection of an appropriate model order and the analysis of coefficients are crucial for enhanc-
ing the predictive accuracy and interpretability of time series models. This subsection discusses
the best model order for various datasets and examines the implications of zero coefficients and
data length on model performance.

6.1.1 Best Model Order Selection

The optimal model order for each dataset was determined based on the balance between model
complexity and the ability to capture relevant dynamics without overfitting. The selected orders
are as follows:

• NDVI: Second order (Table 8)

• Temperature: Fifth order (Table 16)

• Wind Speed: Second order (Table 18)

• COVID-19 Deaths in Russia: Second order (Table 20)

These selections are supported by the data’s inherent characteristics and the corresponding
models’ performance metrics, which include goodness of fit and predictive accuracy.

6.1.2 Coefficient Analysis and Zero Coefficients

Coefficients within these models provide insights into the influence of past values on future
predictions. Particularly noteworthy is the presence of zero coefficients, which often indicate

Table 21: Third Order GLDM Model Coefficients for Death Cases in Russia

Coefficient Value

a1 0.5970

a2 -0.3694

a3 0.7396

a4 0.0083

a5 0.0101

a6 -0.0009

a7 -0.0185

a8 0.0010

a9 0.0000
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redundant or non-influential predictors within the model. Mathematically, a coefficient ai is set
to zero when its gradient in the objective function is negligible, i.e.,

∂F

∂ai
≈ 0

where F denotes the objective function. Zero coefficients reduce model complexity and enhance
computational efficiency, potentially increasing the model’s generalizability. For instance, in the
fifth order temperature model (Table 16), several coefficients are zero, suggesting that some
higher-order interactions do not significantly impact temperature forecasting.

6.1.3 Data Length Consideration

The length of the dataset is a critical factor in model training. Sufficient data length ensures that
the model captures significant trends and seasonality without overfitting. Here is the dataset
length for each category:

• NDVI: 15 data points

• Temperature: 9,939 data points

• Wind Speed: 50,530 data points

• COVID-19 Deaths in Russia: 882 data points

These lengths influence the feasibility of higher-order models. For example, the extensive
data length for Temperature and Wind Speed supports complex models like the fifth order, which
can effectively leverage large datasets to model nuanced patterns. In contrast, the relatively
shorter length for NDVI restricts the feasible model complexity, making the second order an
optimal choice.

This comprehensive analysis underscores the tailored approach required in time series mod-
eling, highlighting the interplay between model order, coefficient significance, and dataset char-
acteristics to optimize forecasting models for various applications.

Optimal Model Orders for Temperature and Wind Speed Despite the larger data
length available for Wind Speed (50,530 data points) as compared to Temperature (9,939 data
points), the optimal model order chosen for Temperature is the fifth order, while for Wind Speed,
it is the second order. This decision is influenced by several key factors, including the nature of
the dataset, the underlying dynamics it exhibits, and the degree of non-linearity present.

For Temperature, the fifth order model (Table 16) is justified due to the complex interde-
pendencies and significant seasonal variations inherent in temperature data. The higher-order
model effectively captures these complexities through extended interactions and nonlinear rela-
tionships, which are mathematically expressed as:

Tt =
20∑
i=1

aigi
(
(Tt−k)

5
k=1

)
+ εt,

where Tt represents the temperature at time t, gi encapsulate the functions representing the
higher-order interactions, ai are the model coefficients, and εt is the error term.

In contrast, the Wind Speed dataset, despite its larger size, is sufficiently modeled by a
second order construct. This can be attributed to the fact that wind speed variations, although
affected by lagged values due to momentum in air movements, generally do not exhibit the same
level of intricate seasonal or nonlinear patterns observed in temperature data. The second order
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model captures the primary and immediate past influences concisely, eliminating the need for
additional complexity, as shown by the following equation:

Wt =
5∑
i=1

aigi
(
(Wt−k)

2
k=1

)
+ εt,

where Wt denotes the wind speed at time t and εt denotes the error term.

Hence, the selection of model order highlights the importance of aligning the model’s com-
plexity with the intrinsic characteristics of the dataset and not solely on its size. The complexity
of the dynamics that the model aims to capture, rather than the quantity of data, is pivotal in
guiding the choice of an appropriate model order for effective forecasting.

Conclusion of Results In conclusion, the analysis presented in the previous sections il-
lustrates the critical importance of selecting an appropriate model order based on the specific
characteristics and dynamics of each dataset. The optimal model orders for NDVI, Temperature,
Wind Speed, and COVID-19 death cases in Russia were carefully chosen to balance complexity
with the ability to capture relevant patterns without overfitting. The findings underscore that
while larger datasets can support higher model orders, the inherent behavior and patterns of the
data primarily dictate the suitable complexity. The presence of zero coefficients in these models
also highlights the efficiency of the Generalized Least Deviation Method (GLDM) in eliminat-
ing non-contributory predictors, thereby streamlining the models for better performance and
interpretability. This tailored approach ensures that each model is not only statistically sound
but also practically relevant, providing robust tools for forecasting and further analysis. As we
move forward, these insights will guide the continuous refinement of our time series modeling
techniques, enhancing their predictive accuracy and utility in real-world applications.

Figure 7: Coefficient values for NDVI across different model orders, showing variability and stability
with increasing order.

The second-order Generalized Least Deviation Method (GLDM) model has been identified
as optimal for the NDVI dataset, particularly given the data’s span of 15 points. As shown
in Figure 7 and detailed in Table 8, the second-order coefficients exhibit a marked decrease in
magnitude compared to the first-order model (Table 7), suggesting a more refined fit to the data
without overfitting, which could be especially problematic given the short data length.

A noteworthy observation from the coefficient analysis for the second-order model is the
value of certain coefficients approaching zero. This behavior indicates the potential redundancy
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of corresponding terms in the model. For instance, as we progress to models of higher orders,
such as the third (Table 9) and fifth orders (Table 11), the presence of coefficients exactly
equal to zero becomes apparent. These zero-valued coefficients are indicative of the GLDM’s
inherent regularization capability, which effectively eliminates non-contributory predictors from
the model, enhancing both computational efficiency and the interpretability of the model. In
the case of the NDVI dataset, the optimal second-order model balances the need for capturing
relevant data dynamics against the risk of overfitting due to a limited number of data points.
This balance is crucial for achieving robust predictive performance in time series forecasting.

Figure 8: Dynamics of coefficient values across model orders for temperature data, illustrating the
influence of different lags and interactions.

Figure 8 showcases the dynamics of temperature forecasting model coefficients across different
orders. The fifth-order model, as elaborated in Table 16, emerges as the most adept for the
temperature dataset, which comprises an extensive 9,939 data points. This data volume allows
for the employment of a more sophisticated model without the typical overfitting concerns
associated with smaller datasets.

The coefficients of the fifth-order model, notably with the exception of a1 which is zero,
reflect significant interactions among the lagged variables of the temperature series. The zero
value of a1 may indicate its negligible contribution to the model, reinforcing the concept of
sparsity within the context of high-dimensional data modeling. Sparsity is advantageous as it
can aid in the model’s interpretability and potentially enhance generalization performance by
reducing overcomplexity.

In this comprehensive dataset, the fifth-order model’s capability to discern and assimilate
complex patterns is demonstrated by the non-zero coefficients, which are instrumental in cap-
turing the nuances and potential nonlinearities of temperature fluctuations.

In Figure 9, we present the coefficient values for the second-order model applied to wind
speed data. This model order has been selected as the best fit for the dataset, which is quite
extensive, totaling 50,530 data points. Despite the larger dataset size, a second-order model is
deemed optimal rather than a fifth order, which might be counterintuitive given that a larger
data length could potentially support more complex models. However, the selection of the second
order is informed by the nature of the wind speed data, which, although extensive, likely does not
exhibit the same degree of non-linear patterns or complex seasonal trends that are characteristic
of the temperature data. This illustrates that the quantity of data does not necessarily dictate
the complexity of the model needed. Instead, it’s the underlying patterns and behaviors within
the dataset that are paramount.
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The coefficients of the second-order model, as seen in Table 18, indicate that the dynamics
of wind speed can be captured effectively without resorting to higher-order complexity. This
model order balances the desire for predictive accuracy with the need for a parsimonious model,
reducing the risk of overfitting while maintaining computational efficiency, which is particularly
advantageous in real-time forecasting applications.

Figure 9: Coefficient values for wind speed data, reflecting the model’s response to historical data
at different orders.

Figure 10: Analysis of coefficient values across different model orders for COVID-19 death cases in
Russia, highlighting potential overfitting in higher orders.

Figure 10 illustrates the coefficient values across different model orders for COVID-19 death
cases in Russia. The second-order model stands out as the optimal choice, as evidenced in
Table 20. With the dataset encompassing 882 data points, the selection of the second-order
model is informed by the data’s specific trends and patterns rather than its size. This decision
emphasizes the importance of choosing a model order that can accurately capture the data’s
dynamics while avoiding overfitting, a criterion met by the second-order model in this context.

The coefficient values, with a1 being significantly larger than subsequent coefficients, signify
the relevance of the most recent observations in forecasting future outcomes. The diminishing
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magnitude of coefficients suggests a decrease in the influence of past data points as they become
older. This progression underscores the model’s focus on more immediate data points, which
are more predictive of the near future in the context of COVID-19 death cases.

Through this careful analysis, we recognize the critical role played by the intrinsic character-
istics of the dataset in determining the appropriate model order. The quantity of data alone does
not dictate the complexity of the model required; instead, the model order is chiefly guided by
the data’s underlying behaviors and the need for a parsimonious model that maintains predictive
accuracy without succumbing to overfitting.

7 Discussion

This section deliberates on the theoretical implications of the selected model orders for different
datasets, discusses the role of zero coefficients in enhancing model efficiency, and considers
potential avenues for future research.

7.1 Theoretical Implications of Model Order Selection

The choice of model order, as demonstrated in the results section, significantly impacts the
model’s ability to accurately capture the dynamics of the data. For Temperature, a fifth order
model was found to be optimal, capturing complex interactions and seasonal patterns through
a quasi-linear recurrence equation:

Tt =

20∑
i=1

aigi
(
(Tt−k)

5
k=1

)
+ εt,

where gi are functions representing the interactions of lagged values up to the fifth order. This
model order selection is theoretically significant as it acknowledges the intrinsic properties of
temperature data, which are characterized by substantial autocorrelation and periodicity.

Conversely, the second order model was deemed sufficient for Wind Speed and COVID-19
death cases, indicating a lesser complexity in their time series dependencies. For Wind Speed,
the optimal model structure is expressed through a quasi-linear recurrence equation as follows:

Wt =

5∑
j=1

ajgj
(
(Wt−k)

2
k=1

)
+ εt,

where gj are the functions representing the interactions up to the second order, incorporating
the primary (Wt−1) and secondary (Wt−2) lagged values of wind speed. This suggests that the
essential dynamics of wind speed can be sufficiently captured without the need for more complex
higher-order terms. The chosen model thus balances simplicity and computational expediency,
making it well-suited for real-time forecasting applications where speed is as valued as forecast
accuracy.

Theorem 11 (Optimal Model Selection and Zero Coefficient Conditions in GLDM). Consider
a time series {yt}Tt=1, and let the Generalized Least Deviation Method (GLDM) be utilized to
minimize the objective function F (a), defined as:

F (a) =
T∑
t=1

arctan |yt − f(a,xt)| ,

where f(a,xt) denotes the predicted value at time t, parameterized by the coefficient vector a.
(i) Optimal Model Selection: The optimal model order m∗ is defined as:

m∗ = arg min
m

min
a
F (a,m),
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where m denotes the order of the model, and fm(a,xt) represents the model utilizing past obser-
vations up to order m.

(ii) Zero Coefficient Conditions: A coefficient aj within the vector a may be set to zero
if the following condition holds:

∂F (a)

∂aj
=

T∑
t=1

1

1 + (yt − f(a,xt))
2 ·

∂f(a,xt)

∂aj
= 0.

This condition indicates that the contribution of aj to the minimization of F (a) is negligible.
Such a scenario typically arises when:

• The feature corresponding to aj exhibits redundancy or strong collinearity with other fea-
tures in the model.

• The feature associated with aj exerts an insignificant influence on the prediction accuracy.

Discussion of Theorem 11: Theorem 11 provides a formal and systematic approach to both
selecting the optimal model order and identifying redundant coefficients within the Generalized
Least Deviation Method (GLDM) framework.

• Optimal Model Selection: The optimal model order m∗ is obtained by minimizing
the objective function F (a,m), which aggregates the arctangents of the absolute residuals
between observed and predicted values. This objective function is particularly robust
against outliers, making the model selection process more reliable even in the presence of
anomalous data.

• Zero Coefficient Conditions: The theorem rigorously establishes the criterion under
which a coefficient aj can be set to zero without compromising the model’s predictive
accuracy. This occurs when the partial derivative of the objective function with respect to
aj is zero, indicating that the corresponding feature does not contribute meaningfully to
the model. The ability to identify and remove such coefficients enhances model parsimony,
reduces computational complexity, and mitigates overfitting.

This theorem underpins the construction of efficient and interpretable forecasting models
within the GLDM framework, ensuring that the models are not only computationally efficient
but also capable of maintaining high predictive accuracy with minimal complexity.

Table 22: Comparison of GLDM with MLP and SVM

Criterion GLDM MLP SVM

Robustness to Outliers + - +

Computational Complexity + - -

Model Interpretability + - +

Flexibility in Model Structure + + +

Handling of Seasonality + - -

Handling of Nonlinearity + + +

Sensitivity to Noise + - +

Table 23: Comparison of GLDM with AutoARIMA and Exponential Smoothing

Criterion GLDM AutoARIMA Exponential Smoothing

Robustness to Outliers + - -

Computational Complexity + + +

Model Interpretability + + +

Flexibility in Model Structure + - -

Handling of Seasonality + + +

Handling of Nonlinearity + - -

Sensitivity to Noise + - -
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Table 24: Comparison of GLDM with BATS, TBATS, Prophet, and Hybrid Models

Criterion GLDM BATS TBATS Prophet Hybrid Models

Robustness to Outliers + + + + +

Computational Complexity + - - + -

Model Interpretability + + + + +

Flexibility in Model Structure + + + + +

Handling of Seasonality + + + + +

Handling of Nonlinearity + + + - +

Sensitivity to Noise + + + + +

Tables 22, 23, and 24 provide a comparative analysis of the Generalized Least Deviation
Method (GLDM) against various popular forecasting models. The ”+” and ”-” symbols indicate
whether each model possesses certain characteristics, with ”+” signifying the presence of a
feature and ”-” indicating its absence.

The assessment of the models based on each criterion in Tables 22, 23, and 24 was conducted
using the following approach:

• Robustness to Outliers: ”+” indicates that the model maintains performance in the
presence of outliers, while ”-” suggests significant sensitivity to outliers.

• Computational Complexity: ”+” signifies that the model is computationally efficient,
requiring fewer resources, while ”-” indicates higher computational demands.

• Model Interpretability: ”+” denotes that the model?s operations and results are easy
to understand, while ”-” indicates complexity that makes interpretation difficult.

• Flexibility in Model Structure: ”+” shows that the model can adapt to various data
structures, while ”-” means it has limited adaptability.

• Handling of Seasonality: ”+” means the model can effectively manage seasonal patterns
in data, while ”-” suggests it struggles with seasonality or requires specific configurations.

• Handling of Nonlinearity: ”+” indicates that the model can capture nonlinear rela-
tionships in data, while ”-” indicates it is better suited to linear patterns.

• Sensitivity to Noise: ”+” represents stability in the presence of noise, while ”-” indicates
that the model’s performance deteriorates with noisy data.

These evaluations were based on empirical testing and theoretical understanding, ensuring
that the comparison accurately reflects the models’ strengths and weaknesses in typical fore-
casting scenarios.

8 Conclusion

In this study, we have rigorously analyzed time series data from various domains, including
environmental and epidemiological fields, employing the Generalized Least Deviation Method
(GLDM) to identify the optimal model order for forecasting. Our results demonstrate that the
complexity required for a predictive model is highly contingent on the dataset’s characteristics,
such as the nature of the data, its underlying dynamics, and the presence of non-linear patterns,
rather than solely on the quantity of data available.

For temperature data, characterized by significant seasonal fluctuations and autocorrelations,
a fifth order GLDM model proved to be most adept at capturing the inherent complexity. On
the other hand, wind speed and COVID-19 death cases, despite the substantial data length for
the former, were accurately modeled using a second order GLDM model. This was sufficient
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to encompass the essential dynamics without overfitting, showcasing the model’s efficiency in
real-time forecasting scenarios where computational expediency is essential. Furthermore, the
occurrence of zero coefficients in the higher-order models signified the method’s effectiveness
in excluding non-contributory predictors, thereby simplifying the models and bolstering their
interpretability. This study reinforces the pivotal role of careful model order selection and the
judicious interpretation of model coefficients in the context of time series forecasting.

Future research directions include exploring the integration of machine learning techniques to
compare their performance with GLDM models, examining the impact of varying regularization
parameters, and applying these methodologies to other complex time series datasets. Through
such efforts, we aim to further refine forecasting models, enhancing their predictive power and
practical application in diverse fields.

Tt =
20∑
i=1

aigi
(
(Tt−k)

5
k=1

)
+ εt,

Wt =
5∑
j=1

ajgj
(
(Wt−k)

2
k=1

)
+ εt,

In essence, our investigation elucidates the nuanced requirements for model specification in
time series analysis, which is crucial for both theoretical understanding and practical forecasting.
The insights gained from this study are expected to have significant implications for data-driven
decision-making processes across various sectors.

9 Future Research Directions

The current study opens several promising avenues for future research. One significant direction
involves the integration of non-linear machine learning models, providing a comparative analysis
against the Generalized Least Deviation Method (GLDM). This approach could further eluci-
date the strengths and limitations of GLDM relative to more complex algorithms. Exploring
the applicability of GLDM in various contexts is another important area for future research.
Specifically, applying GLDM to intricate datasets, such as those found in financial time series
or high-frequency trading environments, would offer valuable insights into the generalizability
and robustness of the model across diverse contexts.

The methodologies and findings presented in this research have the potential to significantly
enhance existing modeling strategies. By building upon these foundations, future studies can
contribute to a more nuanced and comprehensive understanding of complex data dynamics,
ultimately improving the accuracy and reliability of forecasting models.
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Abbreviations

Table 25: List of Abbreviations and Symbols

Abbreviation Explanation

GLDM Generalized Least Deviations Method

NDVI Normalized Difference Vegetation Index

RT Real Time

FH Forecasting Horizon

ARIMA AutoRegressive Integrated Moving Average

MSE Mean Squared Error

MAE Mean Absolute Error

RMSE Root Mean Square Error

MAPE Mean Absolute Percentage Error

ai Coefficients in the models

yt Observed state variables at time t

εt Unknown errors in the model

t Time index

m Model order

n(m) Number of coefficients determined by model order m

T Total number of time instants

gj Functions given in the model

GLDM Estimator Algorithm for calibrating data to determine factors

Predictor Algorithm to forecast future values based on data

arctan Arc tangent function, used in optimization tasks

WLDM Weighted Least Deviations Method

DualWLDMSoluter Algorithm for solving dual tasks in WLDM

Cauchy Distribution Probability distribution used in robust statistics

min Operation to find the minimum value

max Operation to find the maximum value

Dual Problem Derived problem that complements the primal problem in optimization

Primal Problem Original problem in an optimization scenario from which the dual is derived
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